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Translator's Introduction

Der Keplersche Kérper und andere Bauspiele [1938] appeared in the bibliography
of H. S. M. Coxeter's classic treatise Regular Polytopes [1947]. Stephen Baer noticed
it there, obtained a copy, took an interest in the idea of decomposing polyhedra into
building blocks and listed Kowalewski's booklet in the bibliography of the Zome
Primer [1969]. Zome Primer, a manual of new ideas for icosahedral architecture, was
an outstanding example of individualistic, do-it-yourself literature.

Eventually the Zometool was redesigned, quasicrystals discovered, fullerenes
appeared and a tide of articles on icosahedral geometry meant that the pentagonal
system in space was no longer an endangered species.

Finally I read a copy of Kowalewski's essay and found that its central interest was
settlement games, a forgotten precursor of the matching rules that have been widely
discussed since the discovery of Penrose tiles. There is more to the icosahedral
system than just theorems on non-periodicity and matching rules, interesting as these
are. The first mathematical studies of non-periodicity came from an unsuccessful
attempt to advance "mechanical mathematics" and were later propelled by the search
for a localized, atomistic explanation of quasi-crystals. Kowalewski gives us wider
horizons beyond these mechanistic motives, a delightful world of homemade
geometrical paperweights, and of Chicky Leberecht crowing his excitement from the
rooftop.

I have added an appendix with suggestions, comments and pictures that will save -
you some time if you keep them in mind while you are reading Kowalewski's essay.

I regrettably neglected to record the names of the Waldorf school students who
helped with the translation. I am particularly indebted to them for showing me how
to make things more intelligible to young readers.

I have never seen the picture of Shirley Temple playing with the set of
MacMahon's blocks that were stolen from Professor Kowalewski. Let me know if you
find this picture in some dusty old magazine from a flea market bin.

David Booth
Austin Waldorf School
Austin, Texas



Kowalewski’s Foreward

The main object of this booklet is to build a model of Kepler’s Solid that is
bounded by thirty plane rhombi; it can be found in the polyhedra studies of that great
astronomer. It is contructed out of two sets of multi-colored blocks having ten blocks
in each set, joined together along identical colors, similar to MacMahon's cubes. This
gives a new kind of puzzle that is associated with Kepler's thirty-sided solid; we hope
it will attract interest because of its difficulty. A person who would play successfully
without knowing the theory would have to be lucky.

There is a connection between Kepler's thirty-sided solid and a construction in six
dimensions that is made up of squares and that can be taken as the prototype of the
Kepler polyhedron. We are convinced that Kepler would have been filled with
enthusiasm to have known that this six-dimensional cube shelters two such Kepler
polyhedra within it.

I want to express my debt to my brother, the Koénigsberg philosopher and an
excellent scholar in the theory of color, for his many valuable suggestions. I was able
to speak with him during his visit to Dresden in the summer of 1937 about the details
concerning the publication of this booklet.

As with the previous booklets of the series that I have established, the aim is to
reach a general understanding of the subject.

Dresden, White Stag, Winter 1937/38
Gerhard Kowalewski



Chapter One:
Constructions with Multi-Colored Squares and Cubes

A square is divided by its diagonals into four right-angled triangles; let us color
them with four different colors (red, yellow, green, and blue, for example). These
colors are indicated in the figure below by 1, 2, 3, and 4.

NNy
/7 BN\

Figure 1

There are six arrangements of colors; distributions of color that are alike except for a
mere rotation of the square are not counted as distinct.
Figure 2 shows the six possible arrangements of the colors 7, 2, 3, and 4.

I I I
1 1 1
2 4 3 4 4 3
3 2 2
I 1 1
2 3 3 2 4 2
4 4 3
i’ Y v
Figure 2

If we had at our disposal a single specimen of each of these six multicolored tiles,
then we could take up the following problem.

Build one big square out of four of these multi-colored squares so that the large
square has matching colors along the top, bottom, right, and left sides. For example,
we might duplicate the edge coloring of Figure 1.

The tiles should be laid so that they obey what we shall call the domino rule, that
is, squares should only be joined along edges of the same color.
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I 1
2 d d 4
a c
a c
2 b b 4
3 3
Figure 3

The solution of the problem is easily obtained by looking at Figure 3, where the
unknown colors are indicated with the letters a, b, ¢, and d.

It helps here to use the old mathematical trick of naming the unknown. In the
lower left-hand tile, o appears with the numbers 2 and 3; so it must be different from
them. A glance at the upper left tile shows that it must also be different from 7 and
2. So a can only be the color 4. For similar reasons b must be the color /; ¢ must be
2; and d can only be 3; so that the whole construction looks like what is shown in
Figure 4.

1 ]
2 3 3 4
4 2
4 2
2 I 1 4
3 3
Figure 4

This procedure produces a big square having the same boundary colors as those in
Figure 1, using the four tiles displayed in Figure 5. Colors that stand opposite each
other in Figure 1 are neighbors in each tile of Figure 5. This observation fully
determines the choice of the four tiles.
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Figure 5

By turning them so that color number | is at the top, 3 will have to be either on
the right or on the left. Either choice for the placement of 3 yields two choices for the
placement of 2 and 4. With the same four tiles one can obtain a big square, obeying
the domino principle, which shows the same edge colors as square VI in Figure 2.

Instead of coloring the quarter squares, one could just as well color along the sides
of the squares, framing them in color. The domino principle requires that only edges
of the same color may be joined together.

MacMahon's building blocks imitate these problems but in three-dimensional
space. In place of squares there are now cubes whose faces are painted in six different
colors.

We shall represent these colors by I, . . ., 6; as before, we shall regard two
arrangements the same if they can be obtained from each other merely by rotating
the cube.

Now, how many different color arrangements are there? Suppose that the bottom
face, upon which the cube is standing, is colored with the color /. One of the colors

2,...,6

must show on top. This gives five different possibilities. These five types depend on
whether 1 and 2, 1 and 3, I and 4, | and 5, or | and 6, are opposite each other. The
various possibilities are shown on the following page.
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Figure 6

In the type in which | and o are found on the top and bottom respectively, one can
always turn the cube so that the color b comes to the front. That leaves three
possibilities for the color on the back side. The two remaining colors can be played in
two ways (left and right, or right and left). Each of the five types therefore has six
multicolored cubes. The total number of MacMahon cubes is 30, while there were
only 6 different kinds of bordered squares.

In Figure 6 the 30 MacMahon cubes are shown schematically as crossed axes.
Each of the six arms of these crossed axes reaches from the mid-point of the cube to
the middle of a cube face and is marked with the color number of the cube face in its
direction. '

MacMahon's problem is this: Build a big cube using eight of the thirty cubes while
adhering to the domino principle. This big cube must show a prescribed color
distribution agreeing with a model cube that was previously chosen.
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If the pattern cube is, for instance, the first one shown in Figure 6, then the eight
cubes must show a pattern that can be exploded as in Figure 7 to make it easier to
see.

The color a in Figure 7 must be different from I, 3, 5 and also I, 3, 6. There
remain only the possibilities a = 2 and a = 4. When one of these two possibilities is
chosen, the remaining colors are obviously fixed, and one comes to Figure 8 and
Figure 9.

To make it easier for you to check your own drawing, we have shown the order in
which the absent colors are found, through the use of subscripts. For example, in
Figure 8 it is 6; that is found first using the fact that this color must be different
- from 1, 4, and 5. Next 4, is found using the fact that among 1, 2, 3, 5, and 6 only 4 is
missing, and so on.

MacMahon's problem has two solutions (Figures 8 and 9). By close observation
one finds that in both cases the same eight cubes are used.

2 2
4 4
57|L77 ————————— 177|46
633 5839
2 /7 2./
5 756“: ““““““ 757|L86 j
1 ]
342 : 34]0 E
L
: W v 3y
T A% S ——— -2, 6
; /6’, : 511,
46 405/
5 2--------- 246
3 3
Figure 8

The four cubes on the upper story of one figure build the first floor of the other one.
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Figure 9

I propose using a form of the crossed axes that is quite handy for building. In
contrast to MacMahon's blocks these crossed axes have the advantage that it is easy
to control obedience to the domino principle. I glue six cubes of the same size onto
the faces colored 1, . . ., 6 of the MacMahon cube; they are the same size as the cube
face to which they have been attached. Figure 10 shows such a cross in which, for the
sake of clarity, the front and back arms are left off and only suggested by extended -
edges.

Figure 10

The first specimen of this very decorative toy was lost when I sent it to a toy trade
fair. It seems that the thirty multi-colored crosses could not resist the pressure of
publicity and entered into the toy trade quite on their own. A picture of Shirley
Temple playing with them even appeared in an illustrated magazine.

For further information about MacMahon's blocks one can refer to my book, Alte
und neue mathematische Spiele, and also to the beautiful monograph of Ferdinand
Winter, Dr. of Engineering, on the multicolored cubes, both published by B. G.
Teubner. The mathematical, particularly the group theoretic, aspect of MacMahon's
problems have been treated by my ingenious student Walter Stams in an illuminating
way in one of the latest editions of Deutschen Mathematik.
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A two-dimensional analog of my crossed axes of glued cubes is shown in Figure 11
on the next page. The central square is mirrored in all four of its sides to produce a
Cross.

Figure 11
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Chapter Two:
Rhombie Skirts for the Platonic Solids

The five Platonic solids — tetrahedron, cube, octahedron, dodecahedron, and
icosahedron — were investigated by the ancient Greek mathematicians and constitute
the subject of Euclid’s Elements.

These five solids acquired an unanticipated significance in Kepler’s Mysterium
Cosmographicum (1596). He believed that with their help he could establish a law of
planetary distances for the planets known at that time: Saturn, Jupiter, Mars, Earth,
Venus, and Mercury. The astronomer associated a sphere with each of these planets;
it was centered at the sun and passed through its respective planet. One might
wonder whether or not the planets keep the same distance from the sun, an idea that
Kepler himself settled by discovering that the planetary paths form an ellipse with
the sun at one focus. Kepler found in 1596 that the five Platonic solids could be
inserted between the six planetary spheres, so that each such solid has its
circumscribed and inscribed planetary sphere. The specific sequence is: Saturn, cube,
Jupiter, tetrahedron, Mars, dodecahedron, Earth, icosahedron, Venus, octahedron,
Mercury. If we inscribe a cube into the Saturn sphere, so that its corners are on the
Saturn sphere, then the sphere inscribed in that cube (the sphere that touches the
cube’s faces) is the Jupiter sphere. If you now inscribe a tetrahedron inside the
Jupiter sphere, then the sphere that is inscribed into that tetrahedron is the Mars
sphere. This construction of Kepler agrees so closely with the facts that we can
understand Kepler’s enthusiasm and the bombastic style of his publication. Kepler’s
* bold construction was the impulse for the discovery of the small planet Ceres by
Piazzi in Palermo in the early nineteenth century. Later when Uranus and Neptune
entered into the circle of planets this series attracted less and less interest.

Kepler’s planetary construction was very fruitful in stimulating his geometrical
research. He did extensive work in the field of polyhedra studies and discovered, for
example, the star polyhedra. He had another very good idea too. He created what I
call the rhombic skirts for the five Platonic solids. Let us fix the idea of this
construction using the example of the cube.

From directly above the middle of each of the six faces of the cube one can drop a
perpendicular line to the cube edges having some length, say 2. Next, consider the
cube edge AB. There are two cube faces that meet there. Connect A and B to the
mountain peaks E, F situated along the perpendiculars. Doing this creates triangles
EAB and FAB. 1If h is given the appropriate value (h = a/2), the triangles will lie in a
single plane and will form a rhombus braced by AB along its diagonal. When we
construct the rhombus that belongs to each one of the twelve edges of the cube, then
we have a rhombic dodecahedron: We shall say that it is obtained by dressing the
cube in its rhombic skirts.
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It is obvious in Figure 12 that EF =
a2, AB = a, so that the edges of the E
original cube are the short diagonals of the
rhombic dodecahedron. The long diagonals Sz X Y/
form the edges of an octahedron. The same - N\
rhombic dodecahedron serves as the skirts
for both a cube and an octahedron. — F

The rhombic skirts of an icosahedron I\
and those of a dodecahedron are the same
things too. These skirts fit together as /
thirty rhombi making Kepler’s celebrated
thirty-sided polyhedron; we call it Kepler’s
Solid; it is also known as the rhombic
triacontahedron.

Figure 12

We will see later that the diagonals of the rhombi introduced here are related to
each other as a golden section, that is they stand in the ratio

Ya(J5 — 1) to 1.

This thirty-sided polyhedron was of extraordinary interest to Kepler because two of
them can be used to hold the Earth's sphere in his planetary construction. The short
diagonals of the thirty rhombi of Kepler’s Solid are the edges of a regular
dodecahedron, and the longer diagonals are those of an icosahedron. Speculation
about the golden section, which Kepler called the divine section, exercised a special
charm for investigators who were predisposed to mysticism. The ancient Greek
mathematician Eudoxus (400 to 350 B.C.) was the first to divide a segment according
to the golden section. We make use of this division when, for example, we construct
a regular decagon. To find the edge length of an inscribed decagon one needs to
divide the radius of a circle in a golden section. The larger piece gives the edge of the
decagon. The golden section is that division of a line segment such that the whole
piece is related to the larger part as the larger part itself is to the smaller. Taking the
whole segment as unity and z as the larger part, the smaller part will be 1 -z, so the
following proportion holds:

l:z =z :1-2.

From this it follows thatz2=1-2z orz2+ 2z = 1, giving

(z + Y%)2 = 5/4, that is to say z = Ya(+/5 — 1). This is, therefore, the length of the
larger part of a golden section division when the entire segment has a length equal to
one. If we develop the irrational number Ya(+/5 — 1) as a continued fraction, we write

72+2z =1.
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. 1 1 3 1 3
l+z 1+ 1 1+ 11
1+2z 14—

1+z

From this it follows that z, the irrational number of the golden section, can be
represented by the infinite continued fraction

1
1
1
T
14—
1+...

1+
1+

It is the simplest possible continued fraction because it involves only the number 1.
When we draw a circle of radius 1, the continued fraction given above will
represent the side of an inscribed, regular decagon. The sequence of convergants

shows the following rule, which is based on the general principles of the theory of
continued fractions: In each fraction the numerator is the sum of the two preceding
numerators and the denominator is the sum of the two preceding denominators. For
example,2 =1+1,3=2+1,and3 =2+ 1,5 = 3 + 2, and so on. On the basis of
this rule one can easily calculate the sequence of convergants. After 1, 1/2, 3/5, 8/13,
... follow 5/8, 8/13, 13/21,... The number z lies between any two successive terms of
this sequence. The fractions of odd index,

2
1, —, E’""
3 8

converge from below while those of even index,
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that each denominator appears as the numerator of the next term of the sequence.
First you calculate the denominators, gy, g9, g3, ... , by putting ¢; =1, g9 = 2 and

then by using the rule q,, = q,, _1 + g, _ 9. Once that is done the numerators p;, po,
P3; ... of the fractions

) ?2 2 2
> k4 3’ 57 8’ 137"'

?
2
" can immediately be written down using the rule p,, = q,, _ 1 . This gives the fractions
1, 1/2, 2/3, 3/5, 5/8, 8/13, ...

A
D
\\
\\
~
~ ~
B "\~ ~~~——- ~E
o
Figure 13

In Figure 13 a Kepler rhombus is shown, that is to say a rhombus whose diagonals
BD and AC stand in a golden section relationship to each other as the side of a regular
decagon to the radius of its circumscribed circle. If one were to draw a circle having
AC as its radius, then the span BD would go around the circumference exactly ten
times. We will now derive a property of the sharper of the two angles in the Kepler
rhombus.

Obviously

tan(a/2) =z
where z is the number Y4(+4/5 — 1).

From this follows

2tan(a/2) 2z
tana = > = =
1-tan“(a/2) 1-2z 7

Because z2 + z = 1, we also must have that 1 — 22 = 1, thus
tan(a) = 2.

To construct a Kepler rhombus having a given side, AB, we will erect a line
perpendicular to AB, say BE, having double the length of AB (Figure 13). Since tan(a)
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= 2, A will remain an angle of ABE of measure a. Now make AD = AB and swing two
circles about A and B with a radius AB; these will intersect at A and also at a new
point, C. The Kepler rhombus that we are looking for is ABCD.

RS SRR

Figure 14

It is vitally important that we have a cardboard model of Kepler’s Solid at our
disposal. You can easily produce one for yourself. In Figure 14 there are ten
articulated Kepler rhombi that can be drawn on cardboard. You must cut out the
figures and score the edges that are shown as dark lines in order to fold them more
comfortably. It is to be done so that in the finished position the points I, 2, 3, ..., 10,
11 form a regular decagon. Then the Kepler rhombi are inserted at the points
marked with heavy dots. Finally, we must attach a cap made of five Kepler rhombi to
the top and bottom to close the openings. This finishes the construction of Kepler’s
Solid, the rhombic triacontahedron. You should interrupt your reading at this point
in order to finish the model without being hasty in the work.

Let us add a remark concerning the rhombic skirts of the tetrahedron. It can be
made plain from Figure 15 that this gives a cube. The rhombi in this case turn out to
be squares.

Figure 15

The same cube could equally well be taken as the rhombic skirts of a second
tetrahedron shown by dashed lines in Figure 15 and can be said to be the opposite of
the one drawn with solid lines.

Coloring Kepler’s Solid
We will suppose that you have the cardboard model that we have urged you to

construct. If you place it on one of its thirty rhombi, then at the very top there is a
rhombus that is horizontal and directly above the base rhombus. If you then turn the
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model so that the long diagonals of these two rhombi are running from front to back
and the shorter ones are running left to right, then one of the thirty rhombi stands in
front, one on the very back, another on the extreme right, and one on the extreme
left. The planes of these four rhombi, along with those of the top and bottom ones,
form a cube with the base, as before. Label these six rhombi all with the number /.
Next, put an unlabeled face on the bottom, and look for the five other faces that go
with it. These are all assigned the label 2. Proceeding in this way until we reach the
number 5, all thirty rhombic faces of Kepler’s triacontahedron become labeled with
numbers. The six rhombi that make up a cube have the same number.

Now you should obtain five colored sheets of paper. Cut six Kepler rhombi that
are of the same size as those on the model of the Kepler Solid out of each sheet. Glue
a red piece, for example, onto all faces with the label 7; those numbered 2 get, say,
yellow pieces glued onto them; those numbered 3 get green; all with a 4 get blue;
finally, make the ones numbered 5 white. In this way the Kepler Solid gets colored
with five colors and presents a surprisingly beautiful appearance.

The Kepler Solid has, resulting from its skirt relationship to the dodecahedron
and the icosahedron, 20 corners that have three edges and 12 of the five-way corners.

Surrounding each of these five-way corners the five colors 1, ..., 5 are arranged in a
specific way. Reading clockwise, beginning with white, we get 12 different
arrangements of the other colors and thus of the numbers I, ..., 4. On the model that

is here in front of me, I can determine the following 12 different arrangements:

1234 2341 3214 4123
1324 2413 3142 4231
1243 2134 3421 4312

Each of these arises from the numbers I, 2, 3, and 4 by an even number of
transpositions, that is, exchanging the places of some pair of numbers. If one
interchanges two of the numbers within the twelve arrangements, I and 2 for
example, then twelve completely new orderings arise, which (disregarding cyclic
changes in the listing) are as follows:

1432 2341 3214 4123
1324 2413 3142 4231
1243 2134 3421 4312

This now exhausts all 24 arrangements of 1, 2, 3, and 4. One can conclude from this
observation that Kepler’s triacontahedron can be colored in two and only two ways
with the colors I,..., 5 so that the six rhombi belonging to the same cube share the
same color. A coloring that can be made to agree with another by a rotation is not
taken as different. This fact was observed by my brother in his work on color
arrangements in the Berichten der Wiener Akademie 11, May 1916.

It is very attractive to see both of the colorings together in front of you. One
would have to create two copies of Kepler’s Solid. If you are willing to take the
trouble, you would acquire an attractive desktop ornament and a valuable model to
illustrate group theoretic relationships. You would then want to have a friendly
mathematician to teach you some group theory.

Each of the 20 three-way corners of the Kepler triacontahedron is colored with three
colors, a, b, and c. There are ten of these triples showing the five colors. Each triple
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appears twice on opposite three-way corners, but the opposite triples have their colors
in different cyclic arrangements as in:

a b a ¢
c b
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Chapter Three:
The Building Blocks of Kepler’s Solid

- If you examine the Kepler triacontahedron in five colors, certain building blocks
stand out on their own. All you have to do is to look at a corner at which three edges
meet to recognize a stubby block that is embedded in the Kepler Solid. Three rhombic
faces of this block meet at the three-sided corner at their obtuse angles, so that they
present the appearance given here.

Figure 17

We have indicated the back sides by dashed lines in Figure 17, so that the diagram
shows the parallelepiped as it appears. The colored rhombic faces of the
parallelepiped that are on the outside surface of the Kepler Solid show three different
colors. We will use the same color for opposite rhombi, so that the whole block is
colored. It will have three of the five colors, 1, 2, ..., 5, distributed among its rhombic
faces so that opposite faces agree. Ten triples can be formed from 1, 2, ..., 5 — they are
listed below — so there must be ten distinet colored blocks of this kind.

123 I 2 4 125 1 34 1 35
1 45 234 235 245 345

These ten stubby blocks are, as will be shown, the building blocks for the Kepler
Solid.

. In addition to these, there exist ten other parallelepiped-
shaped building blocks that do not stand out as clearly in the
completed model. These have a pair of opposite corners in
which the acute angles of the same rhombi meet. We call
these building blocks the steep blocks. They will be colored in
the same way as the stubby blocks are.

We will see that the Kepler Solid can be built up from
these 20 colorful pieces, the ten stubby blocks and the ten
steep ones, under the rules of the domino principle, so that
the outside surface shows the same pattern of colors as the
original. It cannot be shown that Kepler himself recognized
these facts in detail. We have to assume, however, that he
had these 20 building blocks out of which the Kepler Solid
can be built. The coloring and the use of the domino
principle came later.

Figure 18
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Please interrupt your reading again to make these 20 building blocks out of
cardboard with colored paper glued onto them. The construction of the Kepler
rhombus has already been explained. The acute angle of such a rhombus fits into a
right triangle whose adjacent side is a and whose opposite side is 2a.

This property is the basis of the construction. If you make this angle the vertex
angle of an isosceles triangle, you have half of the Kepler rhombus and you can obtain
the fourth corner by swinging arcs at the base vertices of the isosceles triangle whose
radius is the length of one of the legs.

D cC G
A M B, B
CI
Figure 19

Here is a different way to proceed with the construction. Extend one side of the
square ABCD, say CB, until its length is doubled (Figure 19). If you draw DC’ and
make DC; = DM, then DMB,;C; is a Kepler rhombus. It is good to do the construction

carefully so that the stubby and steep blocks do not have gaps between them when
you use them to build up the Kepler Solid.

If you have never glued cardboard models and do not know how to make a
parallelepiped, you can examine Figures 25a and 20b. The
first one gives a net for the
steep blocks and the second
one a net for the stubby blocks.
These nets have to be drawn
with tabs on cardboard, cut
out, scored, and folded along
the dark lines. Finally, edges
having the same numbers are
joined and glued along the
tabs.

Figure 20a Figure 20b

When you have constructed the ten stubby blocks and the ten steep blocks and
have colored every block with its color triple — using red, yellow, green, blue, and
white — then you will have a pretty toy in your hands. You can build many interesting
structures with it

Keep the domino principle in mind. If you make even more copies of these blocks,
then the possibilities will multiply. However interesting the puzzles that arise with



The Building Blocks of Kepler’s Solid 23

these blocks, we do not want to take the space here for them. Besides, it is not at all
bad to leave you with some things to work out for yourself.

How to Construct the Five-Way Corners

If you take the colored model of the Kepler Solid in hand and look down at a five-
way corner, you see, reading from the right, five colors 1, 2, 3, 4, 5. This corner can
be built with the help of five steep blocks. If you want to make it comfortably, you
need to make a supporting base out of cardboard, which will fit on the corner of
Kepler’s Solid like a cap.

You also need a cardboard cylinder with both ends open to hold the saucer. A
glass can be used instead. The plan for the saucer is shown at the left in Figure 21
and its supporting cylinder on the
right. Put the saucer, having the
surface 1, 2, .., 5, on the top
opening of the cylinder. Rest five f
steep blocks having the colors I, 2,

. , 5 on their undersides in the
saucer. They will show the very
same colors on top, and they must
be joined according to the domino
principle. You can now test what
we say and build everything yourself. Figure 21

The appearance will vary depending on which colors are used
to join the five steep blocks.

In Figure 22 a general scheme is suggested showing what can
occur. The block in area | of the saucer and the block on area 2
join together along the color a, the block on 2 and the one on 3
with the color b, etc.

Figure 22

The single blocks carry the color triples listed here.
Il ea 2ab 3bc 4 cd 5de
Thus the permutations of a,...,e submit to the following conditions:

is different from ] &2
is different from 2 &3
is different from 3&4
is different from 4&5
is different from 5& 1.

o Q0O T Q
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This offers the following possibilities:

b
4
5
I

(S0 £\ [OV] [o)
N|—=]O|O
W]~
MlWIN]O

The five blocks make a cycle, so you must see the table as wrapping around so that
the columns with a and e at the top are neighbors. You will notice by inspecting the
table that each column has a number in common with both of its neighboring
columns. These values emerge when we have decided on the ordering of a, b, ¢, d, e.
Column ¢ has a 4 in common with its neighbors b and e; b has a § in common with a
and c; ¢ shares a 1; d the number 2; e the number 3. Because of this, we will place the
sequence a, b, ¢, d, e right after 4, 5, 1, 2, 3. The five steep blocks, which we want to
use for the production of the observed corner of Kepler’s solid, carry the following
color triples:

1 3 4 245 351 41 2 523

If you number the five faces of the base I, 2, 3, 4, 5 going counterclockwise, each
number makes a triple with the pair of numbers that is opposite it on the pentagonal
base.

Let us identify the numbers 1, 2, 3, 4, 5 with the colors red, yellow, green, blue,
white. Search through the inventory of blocks to find the ones that have the following
color triples. These are the blocks needed to build the corner that we are observing.

red green blue
yellow  blue white
green white red
blue red yellow
white yellow  green

From this you will be able to build the desired corner easily while resting it on the
base. Observed from above it resembles a five-pointed star with the color sequence
red, yellow, green , blue, white, reading counterclockwise.

Around the edges, guided by the domino principle, you can fit in five stubby
blocks. The third color will be determined by the opposite arms of the stars that we
have made.

For example, between the steep blocks,
red, green, blue, and yellow, blue, white

lies the stubby block, green, white, blue;

between

yellow, blue, white and green, white , red
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is the stubby block blue, red, white;

between
green, white, red and blue, red, yellow
is white, yellow, red;
between
blue, red, yellow and white, yellow, green

is red, green, yellow;

and between
white, yellow, green and red, green, blue

is yellow, blue, green.

The colors red, yellow, green, blue, and white will be cyclically switched at each step.
That means each one is replaceable by the one following and the last one by the first
one, thus red by yellow, yellow by green, green by blue, blue by white, white by red.

Our initial task has been the production of this object made out of the five steep
blocks and five stubby blocks. It resembles a cup. Put a rubber band around the
whole thing to hold it tight. The rubber band will go across ten vertical edges and the
rhombi to which they belong. It takes some skill to put on the rubber band.

Filling the Cup

If you look into the cup, it now offers the possibility of using some of the
remaining stubby blocks while respecting the domino rule. You might have already
used the red, green, and blue stubby blocks, so that there are only two ways to
continue with another stubby block. If you settle on red, yellow, blue no more stubby
blocks can be fit in. If you really have done the construction work, you can check this
for yourself.

After filling in both stubby blocks — a red, green, blue one and a red, yellow, blue one
— we see a hollow in the middle of the cup that invites the insertion of a red, blue,
white steep block. On both sides of the inserted block are valleys into which a yellow,
green, blue and also a red, yellow, green steep block fit. The next step is the insertion
of a stubby block. Indeed, you have a choice between a red, green, white one and a
yellow, blue, white one. We will choose the red, green, white one. When this stubby
block is added to your construction, you will see clearly a bed for the green, blue, white
steep block and, after its insertion, a bed for the last steep block, red, yellow, white.
The stubby blocks yellow, blue, white, and yellow, green, white can be accommodated
without your having to think about how to do it. This completes the construction of
Kepler’s Solid.

Six rubber bands are needed to hold the blocks together, because there are six
families of parallel edges.
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An Exact View of the Construction

If you pay attention to the way that the twenty blocks that make up Kepler’s solid
come to the outside surface, you can recognize the following in your model: Nine of
the ten steep blocks contribute one rhombus to the surface. One steep block lies
hidden in the interior of Kepler’s solid. Seven of the ten stubby blocks provide three
rhombi at the surface. The other three remain hidden inside.

The twenty building blocks of Kepler’s Solid have, in total, 20 x 6 = 120 rhombi.
Thirty of them supply the surface of the solid. The ninety others must, in pairs,
make up the interior walls of the construction. Therefore, each interior wall is
doubled. There are thus a total of 45 inner walls that come apart onto the 20 pieces
that make up the solid body. If you put a window in each rhombus that lies on the
outside surface, the nine steep cells have only one window each, and the seven stubby
cells have three windows each. Sixteen cells would therefore take in light from the
outside. Four cells, one steep and three stubby, would not get any daylight.

The six bands around our construction make a triangle around each three-sided
corner of Kepler’s Solid and a pentagon around each five-sided corner. The rubber
bands cut off triangles and pentagons at the corners. Kepler’s Solid has twelve
corners with five edges and twenty corners with three edges, so our rubber bands
make 12 pentagons and 20 triangles. If we consider projecting the solid out from its
center onto a circumscribed sphere, we obtain a partition of the sphere into 12
pentagons and 20, triangles the edges of which are all of equal length. They make
great circles that intersect each other at thirty points.

You can easily create this partition on a rubber ball if you draw a great circle and
then divide it into ten equal pieces. The ten pieces of this great circle will have
equilateral triangles alternating up and down. The new sides of these triangles give
us five more great circles. You really need only the triangles that point up. If you
extend the left upper sides into the great circles of which they are a part, you will
easily obtain a partition of the sphere. It is even easier to circumscribe circles around
neighboring upwards and downwards pointing triangles. This way you get ten of the
twelve pentagons and without difficulty obtain the parts of the partition that were
missing. If you color the six great circles with different colors, a beautiful six-colored
model appears on the rubber ball. The following observation is of importance. You
can arrange for each band to lie alternately above and below the other at their
junctions. You can test for yourself that this rule can be realized without any
inconsistency, if you are willing to construct for yourself or to obtain such a colored
ball. It hardly needs to be said that these Kepler balls are something new and offer a
surprisingly pretty appearance.

Incidental Remarks on the Kepler Ball

If you indicate the six colors that appear on the great circles of Kepler’s ball with
the numbers |/ through 6 so that each of the 12 pentagons shows five numbers in
cyclic order, then the pentagon on the opposite side will have the same numbers
taken éyclically but in the reversed order. Each triangle shows a triple taken from
I,..., 6, while the opposite triangle has the same triad but in the reverse order.
Therefore, on the whole ball you can read off six cycles of five numbers and ten cycles
of three numbers. On my model I find the following five-fold cycles
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24356, 14536, 14625,
()
12563, 13246, 12345.

and the three-fold cycles

» 123, 125, 136, 145, 235,
234, 246, 256, 345, 124.

Twenty triples can be created out of six numbers. Ten of these have been selected
here. If you create the complement of a triple consisting of the other three numbers,
you will find

456, 346, 245, 236, 235,
(k%)

156, 135, 134, 126, 124,

thus the missing triples appear.

The ten triples that were selected form an antipode-free system [this expression is
due to Arnold Kowalewski]. Two triples that together exhaust all six numbers are
said to be antipodal.

The ten distinguished triples in the list marked with a star above have the
following property, which can also be established for (k%) as well. We note that each
triple a b ¢ includes the ordered pairs

ab, ac, and bec.

In total there are thirty ordered pairs. These are all of the ordered pairs that can be
created out of 1,..., 6, each written down twice. Because of this property we call (3>)
a Steiner triple system of the second order. A Steiner triple system of the first order is
called simply a Steiner triple system. The Steiner triple systems will not be used here.
Such a Steiner triple system would have to consist of five triples within which all 15
ordered pairs made up of | to 6 are contained. If I, 2, 3 is one of these triples, there
would have to be another that contains the pair 1, 4. We can use 5 as a name for the
new element that is different from I, 2, 3, and 4. Besides 7, 2, 3 and ], 4, 5 there

cannot be any triple missing. The pair 7, 6 has to be included, but the third element
cannot be among the numbers 2, 3, 4, 5. We arrive at an impossibility. It is not
possible to build a simple Steiner triple system out of 1 to 6, but as the example (%)
shows, there is a Steiner triple system of the second order.
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Figure 23

In Figure 23 you can see the triples of the list (*¥) distributed into two pentagons
whose corners are related using connecting lines. One is an ordinary pentagon, and
the other is a pentagonal star. From each triad there are pathways leading to three
other triads and indeed just to those triads that share an ordered pair in common.

The system of cycles () stands in a simple relation to the triple system (*). Each
round contains five triples that consist of one element and its two neighbors in the
cycle. The entire six cycles deliver 30 such triples, and indeed they are the triples (%)
written down three times each. .

It is interesting to ask: How many different Kepler balls are there? Switch two
elements in the list (%), 1 and 2, for instance. At the same time switch the two
elements that are combined into triples with | and 2. In this case it is 4 and 5, so this
gives

125 123, 256, 234, 246,
145, 146, 136, 345, 356.

Therefore, it is the triple system (%), only in a different order. The transposition that
switches two elements a and b is usually expressed by the symbol (ab). If a’, b’ are
two other elements, which in (k) appear as an ordered pair embedded in some triple,
then this system remains invariant under the transposition of elements (ab) and also
(@’d’). In all there are 15 such permutations, namely

(12)@35), (326, U4HGE6), U524, UJ6)34,
234, 24Q36), (25 6), ((26)45),

S4)@25), @5 H46), 36)5),

4513, “6)2),

56)23.

With the help of the permutations in the first row you can bring any of the elements
2, 3,4, 5, 6 into the first position in place of 7, without altering the system (k). When
I is held fixed, this brings to our attention the following transpositions:
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24 @36), (26)45), @425, @B5H6), (56)23.

With the help of these permutations you can steer any of the elements 3, 4, 5, 6 into
the position of 2. Once | and 2 are fixed, there remains only the permutation

(3 5)(4 6); that is, you can exchange 3 and 5 in the triples they form with | and 2, and
also exchange 4 and 6 without changing the system (k).

Are there other permutations of the numbers 3, 4, 5, 6 that leave the system (k)
unchanged? Since 3 and 5 and also 4 and 6 have to be permuted with each other, it
only remains to check whether (3 5) and (4 6) separately will leave the system
unchanged. Neither does leave the system unchanged. For example, (3 5) and (4 6)
act on the triple 1 3 6 to give 1 5 6 or 1 3 4 respectively: These are triples from the
system (*k%). Apart from the identity, which leaves everything in place, there is only
one permutation of 3, 4, 5, 6 that leaves the system (%) unchanged, namely (3 5)(4 6).

Altogether there are 1-2-3:4 = 4! = 12 different permutations that can be carried out
on the numbers 3, 4, 5, 6, so there are 12 systems that arise from permutations of its
elements. We have made use of a theorem of group theory that has been known for a
long time.

You can check what has been done by thinking as follows: Along with the ordered
pair 1, 2 the additional pair 3, 4 or 3, 5 or 3, 6 or 4, 5 or 5, 6 will appear within a
triple. That makes six possibilities. Each time there are two different systems that
are transformed into each other when the elements that are in triads with 7 and 2 are
switched with each other. For example the system (*) changes into the following new
system when 3 and 5 are interchanged:

125 123, 156, 134, 246,
245, 146, 236, 345, 356.

The new triples are underlined.
The answer to our question, therefore, is that 12 different Kepler balls can be
created with six colors.
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Chapter Four:
Thirty Little Men and Kepler’s Solid

Upon reflection a lot can be said about the Kepler Solid that we made out of
twenty blocks and six colors and then bandaged together in order to hold the building
blocks in place. We already recognized that each band could be arranged in a handy
way with crossings going alternately over and under (on each of the rhombic faces —
you will need a model in hand - two bands cross, one on top and one beneath). Let us
chose the colors ’

black, red, yellow, green, blue, white

for these bands. On each rhombus, one color is on top and one on the bottom. The
top color is the color of the band that crosses above and the bottom color is the color
of the band that falls beneath. If you name the colors I, 2, 3, 4, 5, and 6, each
rhombus has a top number o and a bottom number b. This gives an ordered pair a b.
Thirty ordered pairs can be formed from the numbers | to 6. Any of the six numbers
can occupy the first position; after this is fixed, any of the remaining five can occupy
the second position. These thirty ordered pairs of six objects are distributed on the
thirty rhombic faces of Kepler’s Solid. On neighboring faces, that is, those sharing a
common edge, there are pairs of the form a b and ¢ a, in which a, b, and ¢ represent
three distinct terms of the sequence 1, 2, 3, 4, 5, 6. The band that passes over the
common edge of these two rhombi is a. It is on the top at one face and on the bottom
at the other. The two ordered pairs have, as we see, an element in common but this
element takes the first position in one ordered pair and the second position in the
other; this weakens the domino character of the neighborhood. You could call ab, ac
or ba, ca a strong domino junction and ab, ca a weak domino junction. The thirty
ordered pairs made out of sequence 1, 2, 3, 4, 5, 6 are distributed over the rhombi of
Kepler’s Solid so that neighboring pairs stand at a weak domino junction. This
distribution will be given more attention. My brother, the founder of systematic color
theory, an extraordinary deep theory with rich connections to practical questions,
calls this distribution a settlement.

You can pose a settlement problem whose solution is found in the reasoning given
above: The thirty ordered pairs formed from sequence I, 2, 3, 4, 5, 6 have to be
distributed on the faces of Kepler’s Solid so that neighboring pairs are connected
according to the weak domino principle.
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Figure 24

This settlement can be represented in a plane diagram because the resulting
distortion does not change the nature of anything. Figure 24 shows a regular
dodecahedron that has been pressed flat. The small pentagons lie over the big one
like a sheet, and the large pentagon is merged with the edges of the entire figure. If
you were to blow this up as if it were an airtight bag, it would pop out as a figure in
space resembling a regular dodecahedron. We know that Kepler’s Solid consists of
the rhombic skirts that are shared alike by the regular dodecahedron and
icosahedron. We can do this with a distorted dodecahedron just as well as with a
regular dodecahedron, but we have to be satisfied with representing the rhombi as
quadrilaterals. Choose a point on each face of the distorted dodecahedron and
connect it with the corners. When you take away the edges of the dodecahedron,
there will be a distorted Kepler's Solid. :

This construction is carried out in Figure 25. The dodecahedron edges are still
visible as dotted lines. The point within the large pentagon that makes a basis for the
figure has been thrown to infinity. We have to think of straight lines going to infinity
from the corners of the large pentagon. It is as though we were representing a sphere
by a plane of infinite radius. The point at infinity is the point that is opposite the
center point of the diagram.

Figure 25
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If you pay attention only to the dark lines and think away the dashed lines, you
can see the plane divided into thirty quadrilateral areas, from which five lines go out
to infinity. These thirty quadrilaterals will suffice for the settlement problem instead
of the rhombi of Kepler’s Solid. In Figure 26 you can see the ordered pairs taken
from sequence 1, 2, 3, 4, 5, 6.

* 12 13 14 15 16,
21, * 23 24, 25 26,
31, 32, * 34, 35 36,
41, 42, 43, * 45, 46,
51, 52, 53, 54, * 506,
61, 62, 63, 64, 65  *

> 2

They are placed into the thirty regions of the diagram according to the weak domino
principle.

If you want to make a game out of
this settlement problem, replace the
ordered pairs with little men: In the
pair a b, “a” represents the color of
his pants and “b” the color of his
jacket. The thirty little men are to be
distributed one on each region of the
game board so that no man ever has
the same color jacket or the same
color pants as his neighbor. There is
a common color that makes a kind of
neighborhood connection between
them but it comes out in different
ways. The pants color of one is the
jacket color of the other.

SN
Figufe 26

Each little man, looking across his four boundaries, can say with satisfaction that no
neighbor is exactly like himself. If he has, for example, red pants and a blue jacket,
then two neighbors have red jackets but not red pants and the other two have blue
pants but not blue jackets. Every little man is special, different from his neighbors.
In the settlement game you can put, for example, two men that do not share a
common color down onto regions that meet at a corner. Then, using the principle of
weak domino junction, go on with the settlement. In Figure 27 you can see one of
these beginnings. Into the region marked with a star, that bounds the regions that
have already been used, comes an ordered pair a b which is related to both 7 2 and
also 3 4 by a weak domino junction. To connect itself in the right way to I 2, it has to
be either a | a or 2 a. The pair a | connected in the previously described way to 3 4
when a = 4, and to 2 g is when a = 3. Therefore, the region % must be filled either
with 4 1 or 2 3. If you choose 4 ], then the pair 2 4 definitely goes into the region
%%. If you choose 2 3, you will have to fill in %% with a 3 ]. The same certainty will
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arise for filling in the region %3%%. We shall leave it to you to finish the game board
settlement. That is the best way to get involved with the idea.

Figure 27

If you are a bold player, you can choose more than a two-fold beginning originally
and then see whether you can still play all the little men. Even if you have not used
all of them, you still might be pleased enough to show it to someone. The number
played can be considered as your score for the game. Two players can take turns
trying their luck. Add up the scores to compare the totals at the end.

Anyone who knows the theory can solve the settlement problem if nothing is
showing in the beginning. You can solve it easily by picking out a ring of ten regions
corresponding to one of the six bands around Kepler’s Solid. Each region of one of
these rings meets the ring of its neighbors at two opposite edges. In Figure 28 a ring
is shown using darkened lines. You can begin to fill the regions of this ring with the
pairs 12, 13, 14, 15, 16. On the oppositesidesput 217, 31, 41, 51, 61.
The only thing that can go into the region that bounds 1 2 and 5 I, for example, is
the pair 2 5; only 35 can touch 51 and 1 3, etc. The regions bordering the ring can
be settled in this way. Ten of the five-way corners will be missing. An ordered pair is
then forced by the demands of the weak domino principle with respect to the pairs
that have already been used. You can check this by continuing the columns that have
been started in Figure 28.

Figure 28
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If you consider ordered pairs to be taken from the numbers 0, 1, 2, 3, 4,5 instead
of 1,2,3,4,5,6;and if you make the number 6A + B correspond to the ordered pair
A B, then the numbers that are obtained are all different. It would follow from

6A + B =6A"+ 8
that
6(A-A)Y=B-B

B’ — B, a difference of two numbers taken from the sequence O, 1, 2, 3, 4, 5, is a
multiple of six. That is possible only if B’ — B = 0. It would follow immediately from
this that A — A’ = 0. As long as the ordered pairs A B and A’ B’ are distinct, it cannot
be that the equations A = A’ and B = B’ hold simultaneously. When the pairs A B are
substituted into the expression 6A + B, thirty different numbers are obtained. The
smallest is 6 x 0 + 1 = 1. The largestis 6 x 5 + 4 = 34. The numbers of the form 6x
+ x, that is 7, 14, 21, 28, the multiples of 7, are not included. The following 30
numbers remain:

1 2 3 4 5 6
8 9 10 11 12 13
15 16 17 18 19 20
22 23 24 25 26 27
29 30 31 32 33 34

Suppose you have a Kepler's Solid that is not colored, and ordered pairs made up of
numbers 0, 1, 2, 3, 4, 5 are spread out over the thirty rhombi according to the weak
domino principle. By substituting the number 6A + B for the ordered pair A B, the
thirty numbers in the above table will be marked onto the rhombi. Kepler Solids of
this kind can be used as dice (to actually use them as dice, they would have to be
made out of wood or porcelain). This solid is much closer to a sphere than a cube is.
It rolls easily across a table. However it stops, there is a number showing on the top
face, which can be read as the outcome of the throw. You could have twelve such dice
all numbered differently corresponding to the twelve different Kepler Solids. They
originate from the sequence given in the preceding table, and eventually they will
coincide. There are many possibilities here for creating games, but we do not want to
go into that now. The situation also offers interesting opportunities for making
problems in probability.
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Chapter Five:

The Rhombic Dodecahedron

The rhombic dodecahedron, as we have learned, can be obtained by putting
rhombic skirts on the cube or the octahedron. We will now turn to a construction in

which we can see the rhombic dodecahedron as an exception to solid bodies in
general.

To get better involved in the situation, we want to treat a simpler construction in
a similar way. Consider a parallelepiped, or as we prefer to say a block, lying in space.
Moving out of one corner of this block are three line segments AB, AC, and AD. If we
put them together in pairs — like forces in the construction of the parallelogram of
forces — each line segment is brought to the ends of the others by a parallel
translation, giving the six line segments BC;, BD,, CD;, CBy, DBy, and DC;. We slide

the original line segments to the new endpoints as well and obtain in this way the
three edges B1A;, CiA;, DjA;. All twelve edges of the block are derived from the
three basic line segments AB, AC, AD. If you project the block onto a plane by a
parallel projection (in Figure 29 it is the plane ABD) there arises an image of the block
in the plane.

B, A,
| \
T i |3
Vol Vo
P
\‘| BI Il ‘AI'
A B
c D,
Figure 29

In this plane image everything is derived from the three basic line segments AB,
AC, AD in exactly the same way as in the spatial construction. If you leave out the
line segments going from A and A;’, there remains the hexagon BC;DB;'CD,’B, the

projection of the hexagon BC{DBCD B consisting of those six edges of the block that
do not touch either of the two opposite corners A and A;.

Using this construction, we can design, in our ordinary space, the image of a four-
dimensional block in which we lay down four basic line segments, AB, AC, AD, AE, and
take them together in pairs, triples, and then four at a time as shown in Figure 30.
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Figure 30

You can carry out the construction so that you get a block out of each triple:

* AC AD  AE
AB * AD AE
AB AC * AE
AB AC AD *

You will obtain four blocks, each having points that are opposite to A. Call them A,
Ay, As, A, respectively. These points can be translated to give the missing edges,

which will all meet at the point A".

In Figure 31 we see a cube whose center A is
connected by segments AB, AC, and AD to four of the
cube corners. These corners are so chosen that no
two have an edge in common. These four named
segments are obviously of the same length and

A X between any two of them they form the angle 2a
SN such that tan a = /2. This reminds us of the
\ ancient symbol of the irminsul, a very important
\ regular figure of four legs joined together at their
E ends.

B

Figure 31

[The irminsul was a wooden object that played a central role in the ancient religion of the
Saxons. It was probably destroyed in 772 by the Franks, who defeated the Saxons and forced
their conversion in a bloody struggle. Several puzzles surround this object. Its location and
religious significance, for example, are matters of conjecture. One mysterious aspect of the
matter is that this cross-like tree, and associated representations carved in stone, suggest
Christian symbolism as if the religion of the Saxons was somehow parallel to Christianity, even
though the Saxons remained beyond the pale of the Roman Empire.

Kowalewski suggests that the arms of the irminsul, like ABCDE in Figure 31, did not lie in
a plane. - Ed.]
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If you use these four legs for the construction of the four-dimensional block, then
the points A and A’ will coincide (as in Figure 32). It is a special case of Figure 30.

[The points ABCDE in Figure 30 are placed in a general, arbitrary position whereas the
corresponding points in Figure 31 are located a specific positions in a cube. — Ed.]

Figure 32

We know the rhombic dodecahedron as the rhombic skirts of the cube. If you
leave out the lines that come from the points A and A’, you have a rhombic
dodecahedron in front of you. You may do the same thing in Figure 30, that is, leave
out the edges that belong to A and A’. This would give you a dodecahedron with
parallelogram faces. The rhombic dodecahedron we create by putting skirts on a cube
is a special case of the parallelogram dodecahedron. These parallelogram
dodecahedrons originate in a four-dimensional block by discarding two opposite
corners along with their edges; we must project the figure on one of the infinitely
many three-dimensional spaces that play the same roll in four dimensions as planes
do in three dimensions.

A cube in three dimensions projects onto a hexagon in a plane when you project
perpendicularly in a direction through two opposite corners of the cube. Therefore
the parallelogram dodecahedron is the spatial analog of the planar hexagon.

You see the parallelogram dodecahedron in the right light when you think of it in
connection with a four-dimensional block. We can see it as having its origin in four-
dimensional space, from a four-dimensional block whose opposite corners have been
removed with their attached edges. The four-dimensional block has sixteen corners.
Four edges go out from each corner, uniting in pairs and making six parallelograms.
Altogether their are 16 x 6 parallelograms. Each of them will be counted four times,
however, because they have four corners. The total number of these parallelograms

16x6
in a four-dimensional block is a or 24. We have left out two opposite corners with

their attached edges, so the two times six parallelograms that belong to them will be
removed too. The twelve parallelograms that remain appear as the parallelogram
dodecahedron.
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The Archetype of the Rhombic Dodecahedron
in Four-Dimensional Space

The four-dimensional source of the rhombic dodecahedron can be seen by
imagining a cube in four-dimensional space and then removing two opposite corners
along with their attached edges. Only twelve of the 24 squares of this cube will
remain. They present us with the four-dimensional origin of the rhombic
dodecahedron. The rhombi were originally congruent squares. If an inhabitant of
four-dimensional space looked at this structure from a distance, along the line that
connected the two opposite corners that were removed, he would see the rhombic
dodecahedron as a three-dimensional figure, thus in an entirely different way from
the way that we would see it. This viewer would experience, so to speak, something
similar to what we experience when we look at a cube from a distant point along the
line connecting two of its opposite corners, with the edges attached to those corners
made invisible. The picture that this offers to us is that of a regular hexagon. It is
the projection of the remaining six cube edges onto a plane perpendicular to our line
of sight.

Since we cannot look into a four-dimensional space as we do our usual space, we
need to depend on the analytical methods of Descartes for the treatment of
geometrical questions in four dimensions. It is like Braille, which offers a substitute
for vision. In ordinary space a point is indicated by three Cartesian coordinates x, v, z
in connection with three perpendicular axes. If you want to fix a specific cube, you
have only to give the coordinate triples of its eight corners. If, for example, the
coordinate triples

0,00
01,1

1,0,0 0,10
7 ]I , I ’ O

0,0,
7 O/ ’/ I

|
/ 11,1

are written down, then you have a cube that is supported by the three positive axes
and has edges of length 1.

The corresponding body in four-dimensional space, where there are four rather than
three coordinates, has the corners

0,0,00
1,0,0,0 0,1,0,0 0,01,0 00,01
1,1,0,0 1,0,1,0 1,001
0,011 01,01 0,1,1,0
0,1,1,1 1,0,1,1 1,1,01 1,1,1,0

If you now remove the opposite corners 0, 0,0, 0 and I, 1, I, I, there remain the
corners of the 12 squares that build up the structure that we call the four-
dimensional archetype of the rhombic dodecahedron. The endpoints of an edge
always have coordinate quadruples that differ in only one position, the other terms
agreeing. The corners of a rhombic dodecahedron in our space can be given the 14
labels
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1,0,0,0 0,1,0,0 0,0,1,0 000,17
(%) 1,1,0,0 1,0,1,0 1,0,0,1
0,01, 1 0,1,0,1 0,1,1,0

o1,1,1 1,011 1,1,0,1 1,1,1,0

Here the endpoints of each edge carry coordinate labels that differ only in one
term, thus as little as possible, or as we like to say, they stand in a strong domino
junction. '

Figure 33

Figure 33 shows a plane representation of a rhombic dodecahedron that comes
from the cube shown in dashes. The midpoint of the big square is thrown to infinity,
understood as the point towards which all four of the rays in the figure are heading.
The 14 corners here can be given the labels from the table (%) above. The strong
domino principle must be in control along each edge.

Whoever knows the origin of this net in four-dimensional space will be able to
solve the problem without difficulty. The edges of the original object, which are all
edges of a four-dimensional cube, fall into four classes, each made up of six segments
parallel to one of the four coordinate axes. The same grouping applies to the lines of
the net of Figure 34.

Figure 34

You may realize that in the archetypal, four-dimensional object, edges that go out
from one corner belong to different classes and the edges at the opposite point to the
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same classes. This makes it easy to write down numbers I, 2, 3, 4 representing these
edges on the diagram of Figure 33.

You start by numbering the lines going out from the center of the picture with the
numbers 1, 2, 3, 4. As you proceed with the numbering go along with the rule that
opposite edges of quadrilateral regions get numbers of the same class. Figure 34
shows a completed numbering of this kind.

Now you have to realize that running along an edge of class a, that is at the
transition from one end to another, only the a?” term of the corner label will change,
while the other terms remain the same. If you picture this to yourself, you can say
that the labels 7,0,0,0 and 0, I, ], 1 cannot possibly stand on corners linked by a
line of class 1. The other end of such a line would have to be either 0,0,0,00r 1, 1,
I, 1, but these labels are not available. Likewise, 0, 1,0,0and 1, 0, 1, 1 cannot go on
corners that are joined by a line number 2. The corresponding fact holds for 0, 0, 7, 0
and 1, 1,0, 1,aswellas0,0,0, 1 and I, I, I, 0. These eight labels correspond to the
eight corners at which three edges end.

j010 1010

1010 1010

Figure 35

We may partition the labels without any difficulty, as you can test for yourself
(Figure 35). Ifyoufix 1,0,0,0and 0, I, 1, I, as can be done in two different ways, it
puts a further constraint on the labels because the numbers of the edges always
specify which term must be changed along that line.

When the numbers of the lines are not given, it is not so easy to write down the
labels, especially for someone who doesn’t know the secret of these net diagrams. To
make a game out of it, replace the four termed sequences with little, white towers
that have four bands of colored either black or red going around them.

For example, instead of the label 1,0, 1, 0,
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there is a tower having the colors red, black, red, black going in
order from the top to the bottom (Figure 36). Start filling the
thirteen circles in Figure 37 according to the strong domino
principle so that the towers that are connected by lines differ in
color on only one band. When thirteen positions are occupied,
there will be one tower left over.

Figure 36

Figure 37

You can set up the game so that this tower, a king without a country, is taken out
of the game right in the beginning. If you choose the wrong one, you will not be able
to place the towers properly. The tower that is excluded must have two red bands
and two black bands. That is the big secret. The game loses its appeal when people
know that. The purest pleasure can only be obtained by a childish soul who is
unburdened by the theory. When the towers cannot all be placed, you can still give
points for correctly played towers. )

Four Bands around the Rhombic Dodecahedron

The rhombic dodecahedron is, as we have often pointed out, a parallel projection
of a four-dimensional original into a three-dimensional space. Parallel lines remain
parallel in the projection. From this it follows that the rhombic dodecahedron in our
space has four kinds of edges, each of which consists of six parallel segments in the
original. You can verify it with one glance at a rhombic dodecahedron; it shows in
Figure 32 too.

Now we want to put two altitudes through the middle point of each rhombus
perpendicular to the sides (Figure 38) and give these altitudes the same class number
as the sides to which they belong. Six of these altitudes carry the number I; six carry
the number 2, and so on. The altitudes with the number o stuck on them make a
zone around the rhombic dodecahedron; an entire class of edges, the class a, crosses
the zone.

Figure 38
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You can substitute four colors, red, yellow, green, and blue, for instance, and give
the zones a suitable width. If you color the whole rhombic dodecahedron black, it
produces a model that makes a strong aesthetic impression. Just as with the zones
that surround Kepler’s Solid, you can arrange the zones so that they pass alternately
over and under each other at their six junctions. On each of the twelve rhombi we
have a top zone o and a bottom zone b. Let us return to using the numbers I, 2, 3,
and 4 and write the number of the top zone in the first position and the number of
the bottom zone in the second position, thus making ordered pairs out of the numbers
1,2, 3, 4. These ordered pairs

* 12 13 14
21 * 23 24
31 32 * 34
4] 42 43 *

are spread over the twelve faces of the rhombic dodecahedron in such a way that the
pairs that stand on neighboring faces always have an element in common; the
element is in the first position of one pair and in the second position of the other. We
call this relation the weak domino principle. If you want to carry out a settlement on
the faces of the rhombic dodecahedron using ordered pairs with the elements I, 2, 3,
4 according to the weak domino principle, you can start by putting the pair 7 2 on any
of the faces. The adjoining pairs 23, 24, 31, 4 1 will be distributed among the
four neighboring faces. These four faces can be

seen to have equal status by rotating and

reflecting on the rhombic dodecahedron. M4
So the pair 2 3 could go on any of the four faces.
Once that position has been assigned, the
positions of the remaining three are uniquely
determined. This shows how the course of
further settlement is forced. The result can be 21 43
seen in Figure 39. Allowing for rotations, the
whole thing has two settlements of the desired
kind: Figure 39 and its mirror image. As with
32

Kepler’s Solid, you can make dice by replacing
the ordered pairs on the faces of the rhombic
dodecahedron with numbers.
Figure 39

For this purpose it is advisable to use the numbers 0, I, 2, 3 instead of 1, 2, 3, 4 and
to change the pair a b into the number 4a + b. In place of the pairs

* o) 02 03
10 * 12 13
20 21 ¥ 23
30 31 32 *
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there are the numbers

* I 2 3

4 * 6 7

8 9 * 11

12 13 14 *x.
You will obtain two dice this way because there are two settlements, not counting
rotations. Because there are twice as many faces as there are on the dice of the usual
kind, games played with rhombic dodecahedral dice offer more excitement.

If you project the four zones that we put around the rhombic dodecahedron out
from the center of the solid onto a circumscribed sphere, four band-like great circles
arise. They divide the sphere into six quadrilaterals and eight triangles. You may
paint these bands on the sphere in such a way that each of them goes alternately over
and under at the six junctions. The actual construction, on rubber balls for instance,
will not present you with difficulties. The two balls of four colors that are obtained
will give all the more satisfaction because they cannot be bought anywhere.

The fourteen regions of such a sphere partitioned into six quadrilaterals and eight
triangles correspond to the corners of a rhombic dodecahedron. The previously
considered settlement of the four-termed labels in the corners of the solid with four-
termed labels consisting of zeroes and ones allows us to see the partitioning of the
sphere into triangles and quadrilaterals as a settlement of faces as well.

Construction of the Rhombic Dodecahedron
with Four Blocks

If you think back on the construction of the rhombic dodecahedron from regular
four-legged pieces and glance again at Figure 32, you will see four blocks out of which
the solid rhombic dodecahedron can be made. Any three of the four legs make a solid
corner into which one of the four blocks can fit.

You may build these four blocks out of cardboard. They are bordered by three
rhombi whose diagonals are in the ratio 1:4/2. The blocks that are involved are
clearly the stubby ones.

If you number the legs of one of these four-legged pieces with 1, 2, 3, 4, you can
number the four blocks with the triples

234 134 124 123

The block 2 3 4 fits into the solid corner with the legs 2 3 4 so that three of its edges
lie along the just-mentioned legs. If you color the legs of the four-legged piece, using
for example, red, yellow, green, and blue, you can use red to color the edges of the block
that are parallel to a red leg; likewise, the edges that are parallel to a yellow edge can
be colored yellow, and so on. Carry out this coloring of edges, making sure that the
colored strip is large enough that the colors show on both of the adjoining faces.
Three edge colors are used on each block. On a block with red, yellow, and green
edges, for example, you will paint the edge in stripes that go out from an obtuse
corner where three obtuse angles of the rhombi meet. It does not matter in which
order you paint the colors, because when you color according to the rule, the colors
are cyclically reversed on the opposite corner. The blocks look beautiful when you use
black as the background color or glue on black matte paper.
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Joining the blocks together to make a rhombic dodecahedron is easy because you
know, for example, that the red, green, yellow block must rest itself on the red, yellow,
green leg of the four-legged piece, which, by the way, is not really needed for the
assembly. The red, yellow, blue block rests on the red, yellow, blue leg of the four-legged
piece and must fit in such a way that the two yellow and two red edges coincide. All
four blocks come together at the origin of the four-legged pieces with obtuse angles.
You will find it easy to convince yourself how easy it is to join the four blocks
together. To hold the construction together, wrap a rubber band around each set of
six parallel edges; the previously mentioned division of the surface into eight triangles
and six quadrilaterals stands out clearly. Try to use rubber bands that are colored
like the edges that they cross.
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Chapter Six:
Kepler’s Solid Once Again

The strong link between the rhombic dodecahedron and the four-dimensional
cube gave us the link between the domino settlement of the rhombic dodecahedron’s
corners and the four-termed O-1 labels. This suggests that we reconsider Kepler’s
Solid, the rhombic triacontahedron, once again in search of similar properties for it.

The structure of the rhombic dodecahedron arises from four systems, each
consisting of six mutually parallel edges. If you take the model of Kepler’s solid in
hand, you will notice that its 60 edges fall into six systems of ten parallel edges. It
therefore has some connection with the cube in six-dimensional space. Part of this
six-dimensional cube, which we cannot imagine in its true form, will be the archetype
of Kepler’s solid. It is a difficult matter to decide what part of it needs to be removed.
Our experience with the rhombic dodecahedron gives us clues that help us find our
way through the darkness that comes from our lack of visual imagination in six
dimensions.

We start by providing numbers for the various classes of edges of the Kepler Solid.
All parallel edges have the same class number. One such numbering of the edges can
be seen in the distorted plane projection shown in Figure 40.

Figure 40

Choose any corner that has five edges and assign these edges the sequence of
numbers 1, 2, 3, 4, 5. Follow the rule that states that the opposite sides of a
quadrilateral, the parallel sides of a rhombus on Kepler’s Solid, must be given the
same class number. There will be ten sides of quadrilaterals remaining, and they can
be assigned the number 6. :

In Figure 41a the corners of Figure 40 are enlarged into little circles. The only
exception is the corner that lies at infinity. It would have to be drawn so large that
the entire figure would be included within it. The class numbers for the edges of the
network are copied from Figure 40. Even though the scale of Figure 41a is enlarged
for clarity, some of the class numbers on the short edges at the center of the diagram
have been omitted.
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Figure 41b shows the interior region of Figure 41a, magnified so that the class
numbers of the edges in the center are clearly visible.

Figure 41a

“@’ @
’ @
000
* ’@
OOO
0117

Figure 41a

In the little circles there are 32 different six-fold 0-1 labels written in accordance
with the strong domino principle. That is, when an edge carries the number a, the
labels differ from each other in exactly one position, the ath term. This shows that
such a settlement really exists — it can be carried out consistently. We begin by
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entering the label 0 0 O 0 0 0 into the center circle from which the strands 2, 3,4, 5, 6
emerge. To make it more clear, we prefer to use a two rowed symbol

0 0 O
0 0 0

and we shall hold to this for the other labels as well. In traversing a strand with the
number a, only the ath term of the six-fold label will be changed. This determines the
labels that go into the five neighboring circles. For example, the strand marked 2
changes the second term and leads

0 01 O
from to
0 0 0 0 0 0.

In Figure 41a and 41b the settlement was continued in the necessary way until it was
completely finished. The infinitely distant point must be assigned the label

We can verify that in the finished settlement a strand of type a actually does have two
six-fold labels, differing only in the ath place. The easiest way to check it is to look at
the twelve circles having five strands, including the infinitely distant point, to see
whether the labels on their neighboring circles are related properly. This will take
care of all 60 strands.

The settlement has only 32 labels; that is, only half of the possible ones are used.
We provide here a table of the labels that were used in Figures 46a and 46b, ordered
according to a principle that is easily seen.

000000
111111

010000 001000 000100 000010 000001
101111 110111 111011 1711101 111110

010100 010001 001100 001010 000011
101011 101110 110011 1107101 111100

011100 010101 010011 001110 001011
100011 101010 101100 110001 110100

This establishes the connection between Kepler’s triacontahedron and the six-
dimensional cube. The 64 six-fold 0-1 labels are nothing more than the Cartesian
coordinates of the corners of such a cube, exactly as the two-fold 0-] labels

oo 10 o1 11

represent the four corners of a square, and the three-fold labels
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000 100 010 001
011 101 110 111

represent the eight corners of a cube lying in three-dimensional space.
Concerning these 32 labels the following can be said: Five of the six corners that
are neighbors of 000000 are chosen; here they are

010000 001000 000100 000010 000001.

In the table these entries form the upper part of the second line. Take them in a
cyclic sequence.

010000 000100 001000

000001 000010

Any two of these will form a square with 000000 at one corner. the fourth corner of
* such a square can be obtained by adding the labels. This gives five more corners that
have the following marks:

010100 001100 001010 000011 010001.

They stand in the top line of the third row of the table having 32 entries. The
operation that we have just carried out is indicated schematically in Figure 42.
In six-dimensional space a

. 000  _.-e"Tes -
“square” is really square, rather o1 -~ -~ 87
than rhombic in shape as shown A
here. The coordinate labels for

the next corners beyond those
shown are easy to calculate if you
know that edges will have the
same length and direction as they
did before. go1

———————————
~

Figure 42

Thus, if

X1, «e Xg Y1 - V8 Z1s ++ 28 U, ..., Ug
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are corners of a parallelogram, then as you walk around the edges — see Figure 43 —
you see that the step x = y and u — 2z produce the same coordinate changes.

(u) (z)

(x) (v)

Figure 43

This means that

Yi—X, =2; - U; (L= 1, ,6)

or
X; +Zi =Y + Uu;.

If you add the coordinate labels from two opposite corners, you always get the same
result. In this way we obtain the five new coordinate labels that are on the boarders

of Figure 44 but had not yet appeared in Figure 42. In the table of 32 labels they lie
in the upper part of the last row.

o1 010
o1l 101
001 %g
010

110

001
100

Figure 44
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This explains the meaning of the 16 points that stand in the upper half of our
double-rowed table. The bottom half shows the opposite corners. In the six-
dimensional cube, just as in the bottom half, opposite corners have complementary
coordinates. Complementarity reveals itself in the replacement of O marks with Is
and vice versa; you can arrive at a complementary label by switching O and 1.

If you choose 16 corners of the six-dimensional cube, as in Figure 44, and use the
operation of complementarity to find the ones underneath, you get all 32 cube corners
in the table. When you remove the bottom layer of corners with their attached edges,
you have a view of the six-dimensional cube that is the original form of Kepler’s Solid.

To better explain Figure 44 in words, we will take a corner, D, which with A and
two of A’s neighbors, B and C, make a square. Call the resulting quadrilateral DBAC.
A is framed by its neighboring corners B and C. The rule of the construction runs as
follows: We choose five of the six neighbors of the cube corner A; and name them A,,

A3z, Ay, A5, Ag in any order. In six-dimensional space the neighbors of A; are

completely independent. In the schematic figure we arrange the subscripts 2, ..., 6 in
a counterclockwise cycle just to give a better view of the whole process. Now we build
the point sequences AgAjAs, AsA1A3, A3Aj1A, A4A1A5, AsA A4, into quadrilaterals
and name these cube corners A, Ag, Ag, A, and A;; (Figure 45).

Figure 45

Continuing, we make the quadrilaterals A;A>Ag, AgAzAg, AgAA;g, A10A5A;7,
and A;;AgA;. Therefore, we obtain the cube corners A;p, Aj3, Ay Ajs, and Ay

Each of these cube corners has its opposite corner. These opposite corners can be
indicated by A’; ,..., A";j4. The other 32 cube corners together with their attached

edges will be pulled out of the cube. The cube will be regarded here as a system of 64
points with certain connecting edges. After picking out 32 corners, together with
their edges, there remains an object that has a cap like Figure 50, as well as another
cap that is opposite it. There are ten easily calculated edges that join the two caps. If
you look and the end points of the edges in Figure 45 and compare them with those in
Figure 44, you obtain the labels of the connecting corners on the front cap.
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010100 011100 001100 001110 001010
(%) 001071 000011 010011 Q10001 010101

The complementary labels give the corners that are on the opposite cap

101011 100011 110011 110001 110101
(k%) 7170100 111100 101100 101110 101010

Each label in (%) has one and only one neighboring label in (%%); indeed the labels in
the first row of (%) are neighbors to those in the second row of (%%) and vice versa. If
you were to magically change the two complementary labels and hold the new figure
above the old one so that complementary marks were arranged perpendicularly over
one another, you would need to turn the figure around 180 degrees to get two
neighboring corners lying in the same direction from the center.

There can be no doubt that there are more neighbor relationships along the lines
built up in Figure 41a of 32 cube corners, counting the distant point. You can dive
down into the diagram with two typical labels in order to test the matter. The label
001100 has five neighbors in the figure. The list of thirty-two is only missing the one
neighbor 00110]1. We see only three neighbors for the label 0710101. The other three
— 000100, 011101, 010100 - cannot be found in the list of thirty-two. We have

provided a table that gives the missing neighbors for the whole sequence of points.
First, there are the twelve labels that have only one missing neighbor.

[The twelve labels appearing in Figure 41 that have one missing neighbor lie in the top row of
the table that follows. The missing neighbor of each one appears beneath it. Together they
form the first block of two rows in the table. — Ed.]

Beneath twelve labels in the top part of the table stand, in a similar way, the
twenty labels that have three missing neighbors. Again the label is on top with its
missing neighbors beneath it. The facts can be read off with the help of the strand
numbers. The table is on the following page.
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000 | 010 | 010 | 0OOI | OOI 00O | 111 101 101 110|110 | 111
Q00 | 700 | 00! L 100 J0OlO JOIT 111 JOIl Q110 )OIl |10 | 100
100 | Ol0O | 011 L OOT |GIl | OO0 |OI1 101 y100 |110 | 100 |11
000 | 110 001 | 101 {0OQl0 | 111 J 111 JOO!I 110 10710 | 10! | 000

010 | 001 | 000 | 000 | 00O | OO1 | 0OI | OO | OlO |01
000 | 000 | 100 | 010 JoO!I OI1 J110 joOIl 101|100
110 | 101 | 100 | 100 100 | OIT | OIl [ OIl | 000 |OIl
000 | 000 | 100 | 010 J 00! | O11 J 100 | Ol | 101 ] 000
011 | 011 | 000 | 010 | 0Ol | 001 |0OOO |OIO |01l JoOII
000 | 000 } 110 JOI0C 00! | 111 J1I10 Q111 | 101 J1i0
010 | 001 | 000 | 000 | 00O | 001 | 0Ol JOI10 |0IO |oOII
010 | 001 j 101 {110 101 JOOI | 111 JOIO 111 Jl10]

for yrio ity rrr yrrr y 1o | 110 | 101 ioil | 100
177 y 1171 1011 | 101 } 110 Q110 ]001 |100 J0I0 JOII

001 | OI0 |OI1 |OIl |01l | 100 100 100 | 111 100
111 y 111 1011 | 101 | 110 1100|001 100 J0OI0 111
100 Y100 | 111 101 110 110 | 111 | 101 | 100 | 100
It 1111 1001 | 7101 | 110 | 000 | 001 | 00O | 010 | OO1
lor yrioyrrr i rrr y1io (110 | 101 | 101 | 100
101 | 110 | 010 | OOl | OI0C | 110 | 00O | 101 | 00O | OI0

In addition, we will survey this inventory of neighboring labels to display those
that are missing from the list of thirty-two. Labels having two or four number Is
appear three times; the others each occur once.

LIST OF MISSING NEIGHBORS

100000
o11111

110000 101000 100100 100010 100001
001111 oiorii orioi1 011101 011110

011000 010010 001001 100010 100001
100111 101101 110110 011101 Oll1110

011010 011001 010110 001101 000111
100101 100110 101001 110010 111000

This is also a list of the thirty-two cube corners and attached edges that were
eliminated when we took Kepler’s triacontahedron from its archetype, the cube in six-
dimensional space. We may think of this six-dimensional cube as being especially
perfect because the thirty faces, which are rhombi in three dimensions, are squares
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.there. We have something to say about the neighbor relationship holding among the
32 corners of this cube.

Twelve corners, those that have an odd number of Is, have one neighboring
corner in the old list, therefore five in the new list. The remaining ones are
connected to three in the old list and three in the new. The new list has neighbor
relationships like the old one. This leads us to the conjecture that a second rhombic
triacontahedron can be created from the new thirty-two points along with their
connecting edges. Figure 46 shows the confirmation of this conjecture. We call the
second Kepler Solid the complement of the first.

From the table showing the neighbor relationship holding between the thirty-two
old and the thirty-two new points, it can be seen that there are 72 cube edges passing
between the old 32 and the new 32. They fall into six classes containing twelve
parallel edges each. These edges radiate from two opposite five-fold corners of
Kepler’s triacontahedron and from the ten neighbors that have parallel connections
with the complementary Kepler Solid.

Figure 46

Thirty-Two Corners, Old and New

If you specify the places in a six-fold 0-]1 label in which the /s can be found, the
label is completely determined. Run through the thirty-two old labels and write the
number groups on round paper or wooden disks that will serve later as game
markers. We associate the disk with nothing written on it with the sequence 000000.
- The other number groups that we use are listed on the following page.
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2 3 4 5

24 26 34 35

234 246 256 345

156 135 134 126

1356 1345 1256 1246

13456 12456 12356 12346
123456

Construction Games with Kepler’s Solid

6

56
356
124
1234
12345

If a O is changed to a | in some 0-1 label, then the corresponding number groups
are expanded by one term. On the other hand, changing a | to a O causes a term in
the number group to fall away. We will designate two such number groups as
neighbors if a term has been dropped from the longer one. Two neighboring groups

consist of an r-termed number sequence and an (r +
shorter one forms a constituent part of the longer one.
that correspond to the new thirty-two corners.

I

12 13 14 15

23 25 36 45

235 236 245 346

146 145 136 125

1456 1346 1245 1236

3456 2456 2356 - 2346
23456

1)-termed one in which the
Here are the number groups

16
46
456
123
1235
2345

To compare these number groups with those of the old thirty-two, we openly

display the previously discussed complementarity.

We see that both systems

supplement each other in a complete catalog of the number groups that can be built

from1,2,3,4,5,6.

] 2 3 4 5 6
12 13 14 15 16 23 24 25 26
34 35 36 45 46 56
123 124 125 ]26 134 135 136 145 146 156
234 235 236 245 246 256 345 346 356 456
1234 1235 1236 1245 1246 1256 1345 1346 1356
1456 2345 2346 2356 2456 3456
23456 13456 12456 12356 12346 12345

123456
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Settlement Games on the Kepler Net

The Kepler net is made of corners and edges of Kepler’s Solid in planar
representation as seen in Figure 41a, where the distant point is associated with one of
the corners. The corners usually show as nodes and the edges as strands of the net.

Take out the 32 game markers on which the number groups of the thirty-two old
corners are written, including the blank marker. To play, you put away one of the
markers — it corresponds to the infinitely distant point — and then you try to settle the
rest of the markers, step by step, on the net. Neighboring nodes must be covered
with markers whose number groups are related by crossing out one of the numbers in
the longer of the two groups. We know that such a settlement can be done
consistently, but someone who does not know the theory would have to be lucky to do
it. Interesting games should not be merely matters of chance.

The infinitely distant point in the Kepler net has five neighbors. We are in a
position to identify the number groups of this type from our previous investigations.
Using Figure 46a, we can list them; in addition to the blank number group they
include the following:

24 26 34 35 56
1356 1345 1256 1246 1234
123456.

These are just the number groups that have an even number of terms (0, 2, 4, or 6).
The player who does not know this and puts some other marker away to represent
the infinitely distant node will end up in a disaster no matter how well he plays
otherwise. If we use the thirty-two game markers that belong to the number groups
of the thirty-two new corners, then the nodes that have five strands will be associated
with the number groups that have an odd number of terms. We saw this in Figure
51. If we reserve a marker with an even number of terms for the infinitely distant
point, the settlement can never be completed.

On a game board with either the thirty-two old markers or the thirty-two new
ones, two players can take turns playing markers after one is put aside to represent
the infinitely distant node. The one who settles the most nodes would win.

A Very Difficult Settlement Problem

We can produce sixty-four game markers that show all the possible number
groups made out of the numbers I, 2, 3, 4, 5, 6, including the blank marker. These
markers can completely settle the two forms of the Kepler net according to the
neighbor principle. This simultaneous settlement can be seen by translating the
labels in Figures 46a and 51 into number groups. Anyone who does not know our
theory would have to be very lucky in order to complete this difficult settlement
problem. Perhaps the extraordinary difficulty of this problem will be especially
fascinating for people who have a feeling for these things. It does not need to be
stressed that this game is entirely new.

If we think about the course of this investigation, it would not be immodest to say
that our new game came out of six-dimensional space. The mathematician can
produce rare things that are seldom seen. He can import games from the sixth
dimension. My heartfelt enthusiasm for this fantastic idea reminds me of the fairy
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tale in which Chicky Leberecht was drinking tea in his rooftop coop while
romanticizing about the caravans that brought this fine tea all the way from China.
We should not let the topic pass without saying that instead of using number
groups written on game markers, we could produce white, six-story towers with red
and black bands around them. Towers standing on neighboring nodes must differ in
color on only one band; the other bands must agree in color.
Finally, we could employ markers that do not show the 0-1 labels but, letting x4,

X9, X3, X4, X5, Xg represent Os and Is, show the numbers 32x; + 16xy + 8xg + 4x4 +
2xg + xg instead. This correspondence assigns numbers between 0 and 63 to the O0-]

sequences. Restricting ourselves to the old set of thirty-two cube corners the
assignment gives us the sequence

0, 1, 2, 3, 4, 8,10, 11, 12, 14, 16, 17, 19, 20, 21, 28,
35, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 59, 60, 61, 62, 63.

The neighbor principle requires that connected nodes be occupied by numbers
that differ by a power of two.

If we want to use only the thirty-two labels from the sequence 0 to 63 without
having gaps, we must first pull out six terms from the middle having the numbers 29,
30, 31, 32, 33, 34. The numbers 28 and 35 now stand on the ends of this gap. Left of
28 is a six-fold piece 22, 23, 24, 25, 26, 27. On the right of 35 is the six-fold piece 36,
37, 38, 39, 40, 41. Farther to the right and left we pull out pieces to create four gaps
of one element each. Blocks of three terms, then two terms, then one, and then three
terms are left standing. Going to the left, 21, 20, and 19 are left standing; farther yet,
17 and 16; then 14 is left; finally 12, 11, 10 remain. The terms 18, 15, 13, and 9 are
scratched out. To the right there remain 42, 43, 44; going farther, 46, 47, and then
49; finally 51, 52, 53 stand, while 45, 48, 50, and 54 fall out. At the ends we produce
two three-fold gaps going left from 8 and right from 55. Figure 52 shows the gaps in
0, ..., 63 in schematic form.
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Figure 47

| L

The Building Blocks of Kepler’s Solid
in Six-Dimensional Space

The twenty building blocks that we used to make Kepler’s triacontahedron are
congruent three-dimensional cubes in six-dimensional space. It is not difficult to
follow the construction using coordinates in six dimensions. We will do this very
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briefly. The first step is to choose a corner to be 000000 and pick out its five
neighboring corners

0710000 001000 000100
000001  000010.

It forms a cyclic sequence the way it is written here. If we denote the corners by

B C D
F E

17

and if we give the names A and A; to 000000 and 100000 respectively, we have built a
three-dimensional cube out of AB, AC, AA;. Likewise there are cubes made from AC,
AD, AA;, out of AE, AF, AA;, and out of AF, AB, AA,. Let the sequence G, H, I, K, L be
the fourth points of ABC, ACD, ADE, AEF, and AFB as given schematically in Figure 48.

Figure 48

In six-dimensional space parallel edges radiate out from B, C, D, E, and F. We call
them AA;, BB;, CC;, DDy, EE;, FF;. The process continues until we make a complete
three-dimensional cube from these edge triples.

BL BG BB,
CG CH CG
DH DI DD,
El EK EE,
FK FL  FF,

This gives us twenty blocks already. By using our former construction in three-
dimensional space, we can find the twenty blocks that are missing.

It would be advantageous to move out from the corner A; that is surrounded by
eight blocks. We will indicate vectors here by the use of bold, lower case letters.

Out of A go six edges of the six-dimensional cube, which we call eq,..., eg. Going
out of A; we construct the three dimensional cubes
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€1€9€3 eyezey ejeye;s €1e5€q €1€g€2
€g€3€, €9€5€¢ €3€e5€y

Then, going from A; + eg, A} + €3, A; +e4, A} + e5, A; + eg we construct
€1€ge3, €1€9€4, €1€3€;5, €,e4€q, €1€5€9.

Continuing out of A; + e4 is the cube egeges; from A; + e5is egeyeq; from A; + ey
is egeges and egezeq. Going still farther out from A; + ey + ey gives us the cube
egey eq, and from A; + e4 + e5 comes the cube egegeq. Finally, from A; + eg + eg
we construct egezeg.

When we write a sum of a point followed by a vector, we mean that the head of
the given vector passes through the vectors in the sum. For example, the symbol A;
+ e9 + eg says that the point A; has to pass through a segment having the length and
direction of ey and then going on through a segment having the length and direction
of eg.

[Kowalewski’s essay ended in a surprisingly abrupt way. It seems that the last section was a
bridge into mathematical technicalities that he did not want to cross in an essay for general
readers.

The Supplementary Observations that follow were originally at the end of Chapter Two. —
Ed.] -
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Supplementary Geometric Observations

We still have to supply proof that the diagonals of a Kepler rhombus stand in a
golden section ratio to each other. In Figure 16, two neighboring triangles of an
icosahedron are shown. ACB is half of a Kepler rhombus based on AB.

Figure 49

The rhombus forms an angle a with both triangles so the complete angle GDF is
20, leaving a supplement of 2 needed to make two right angles. Thatis a + B = w/2.
When CE is the perpendicular line from C to ABF, then E will be the orthocenter,

giving
pE= V3 _ o
6 43
where a is the side of the triangle. It follows from Figure 49 that
DE  DE

DC = —.
coso.  sinf

The following relationship holds for the diagonal relation of the Kepler rhombus
pc_ 1
DA /3sinp’

From this we see that B is half of the angle between two neighboring planes of an
icosahedron. To help in the calculation of B, one should now place a sphere of radius
1 about one corner of the icosahedron. The five planes of the icosahedron cut out a
spherical pentagon whose sides equal /3 and whose angles equal 2B (see Figure 50).

’ Figure 50



62 Construction Games with Kepler’s Solid

It can be read from Figure 50 that
cos(W3) =15  sin(T/g) = 1/y4/3
1/, = cos?\ + sinZhcos(2/5)

sinp sinA

sin(2n/5) B J3/2°

The first equation now gives

gin2) = 1 )
2(1 —cos(2r/5))
From the second we obtain
.2 . . .
sin2p = — 250 @5 _ 99 4 4 cos(@n/B) = 4/3 cos2(/5),
3(1-cos(2n/5))

thus

sin = 2 cos(n/5)
73 ;

oc__ 1

From this it follows that =
DA  2cos(n/5)

In Figure 51, cos(n/5) is marked with the long bracket. We can see that cos(n/5)
= Y%(1 +2). Inview of the fact that 2z (1 + 2) = 1, we obtain 2cos(n/5) = 1/z.

2 =z="Y(/5 - 1).
DA

With that we have obtained the desired result. It would have been possible to do it
without the help of spherical trigonometry. We have supposed that most readers are
familiar with the law of spherical sines and cosines. If that is not the case I
recommend that you look it up in my book Lehrbuch der hoheren Mathematik,
published by Walter de Gruyter, 1933.

Zz
1
z

Figure 51
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The famous psychologist, Fechner, founder of experimental psychology, concerned
himself with the aesthetic properties of the golden section, and he has remarked that
the most attractive rectangle has its sides approximately in a golden section ratio:
They are nearly Yo(+/5 — 1) to 1. If we separate a square off such a rectangle, then a
rectangle remains that is similar to the original. If we regard the long side of the
rectangle to be of unit measure, then the short side is z. After removing the square,
the remaining rectangle has sides of 1 —zand z, andindeed 1 :z::2: 1 - 2.

z 1-z

Figure 52

Figure 53 shows another remarkable property of the golden rectangle, that is a
rectangle whose sides are in the ratio z : 1. Drop perpendicular lines from two
oppositely positioned corners onto the diagonal that connects the other pair of
opposite corners.

E ! B
~ [24
~ ~ D
~
~

z ~

2a) ¢ ~ ~.

~
A
Figure 53

These two perpendicular lines are just as long as the diagonal segment between the
feet of the perpendiculars.

So we get that AC*AB = 22, CB-AB = 1. Making use of the fact that AB = y1+2%, we
obtain

2
AC = 2 o P
V1+2° 1+2°
This gives
2
CD = AD - AC = CB-AC = =2
\/1+22

Furthermore EC2 = AC-BC, thus
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z
\/1+z2.

Tt follows from 1 — 22 = 2 that EC = CD. One might also appeal to the fact, manifest in
Figure 53, that tano = z and that

EC =

EC
hC

tan2a =

Now make use of the fact that tan20 = 2 to conclude that

EC = CD.
The golden section appears in the regular pentagon as shown in Figure 54.

Figure 54

The three angles marked with a stroke are all equal to 7/5; using the theorem on
inscribed angles we obtain

ABD : BCD = AB : BC.
On the other hand

ABD:BCD = AD+BDsin(n/5) : BD-CDsin(2r/5) = 1:2cos(n/5)=z: 1,

from which it follows that AB : BC = z : 1. This means that the diagonal AC is cut in a
golden section ratio by the diagonal DE, and also naturally by DF. This gives that AD :
EC = AB : BC, so we have that AD: EC =z :1. The sides and the diagonals of regular
pentagons stand in a golden section ratio. From this it follows incidentally that the
angle between the diagonals of a pentagon, like the angle AFD of the figure, is equal
to n/5.
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Appendix
Rules and Tools David Booth

MacMahon's Blocks

Gerhard Kowalewski was the author of textbooks, treatises on analysis, and a
mathematical autobiography [6]. It may have been his brother's study of systematic
color theory that stimulated his interest in combinatorial geometry; it was not his
usual field of research.

He began Construction Games with Kepler's Solid [5] with the puzzle of
MacMahon's blocks. Here is the puzzle. One of the thirty blocks is chosen and set
aside as a master. The thirty blocks are colored in the thirty different ways of putting
six different colors on the faces of a cube. The master block could be any one of the
thirty. The remaining blocks are used to make a two-on-a-side assembly whose
outside colors agree with those of the master block.

Figure 54

Figure 54 shows Kowalewski's version of the MacMahon blocks. Kowalewski cut
away the blocks into cross shapes so that you can see into the assembly better.
Instead of six faces on a cube, you see six little colored cubes attached to a central
core.

At the left side in the picture is the master. This master block has its yellow side
pointing up. So the top four blocks of the assembly must have yellow pointing up too.
In Figure 54 the last piece of the puzzle is being put into place. The six sides of the
two-by-two cube must have the same colors as the master cube.

The assembly is also required to obey the domino principle. When two blocks
meet, they must meet on identical colors. In today's revival of tiling theory this would
be called a matching rule.
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Figure 55a shows the top view of the assembly in Figure 54. Yellow sides face up as
dictated by the master block. On the bottom layer of the assembly the yellow sides
cannot be exposed to the outside. They have to point inward to the center and they
must meet other yellow sides in order to satisfy the domino principle.

[ | [
Y Y B
Y Y[
Y Y
IV [
Figure 55a (top) Figure 55b (bottom)

In actual play your hands and eyes work together to sort through the blocks, put
aside the ones that cannot possibly be used, rotate the others into the proper position,
and start the assembly. Someone who does it quickly would have good spatial
intuition, dexterity, and practical intelligence. It is not necessary to ponder your
moves. The first thing of interest is the question of whether a solution exists.
Actually there are always two solutions.

The puzzle was described in the following way in P. A. MacMahon's book New
Mathematical Pastimes in 1921, [7], a collection of tiling puzzles that were intended
to illustrate combinatorial principles. We learn there that MacMahon, who wrote
treatises on combinatorial mathematics as a retired British army officer, was shown
the puzzle by his friend Col. Jocelyn.

A cube has six faces, twelve edges and eight summits. If we are allowed six
different colors in order to color the faces each with a different color, we find that we
can make 30 differently colored cubes.

It is a well-known rule, applicable to any regular solid, that in order to ascertain
the number of different cubes or other solids that can be made by coloring the faces
with different colors it is merely necessary to divide the factorial of the number of faces
by twice the number of edges. Thus in the case of the cube we have

6xbx4x3x2x1
2x12

So also in the case of the tetrahedron, composed of four equilateral triangles, which
has four faces and six edges we have

4x3x2x1
2x6
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And so on for any regular solid.

We now construct these 30 cubes and, denoting the colors by numbers, we
represent any such cube in a diagram as shown in the figure....

They [the cubes] are conveniently denoted by 15 capital letters and by the same
letters dashed, because they naturally arrange themselves into 15 pairs of cubes.

For example the cubes G , G' have the same pairs of opposite faces; the faces
colored 1, 2, 3 are opposite to those colored 5, 4, 6 respectively in both cubes. If the
colors upon any one pair of opposite faces of one of the cubes be interchanged the other
cube is produced.

Looking vertically down upon the cubes the colors read clockwise on the one are
identical with the colors read counterclockwise on the other.

The above cubes are called "associated cubes."

It is not obvious or even very easy to construct a Pastime from these 30 cubes.
They can be assembled into a block having the dimensions 2 X 3 X 5 and we can make
a selection from the whole number in many ways; for instance if we can select
intelligently either 8 or 27 of these they can be assembled into large cubes. Moreover
we have four different contact systems at our disposal which, following the practice of
other pastimes, we might denote by C1 71111, C11,1,1,2 C1122 Cagsg-

The rule Cy 1 11,1 in MacMahon's notation is the ordinary domino rule: Colors can

only meet like colors. The various other rules require crossed matchings. The
C1,1,1,1,2 matching rule, for example, has four colors that must meet a like color and

one pair of colors that can only meet the other member of the pair. MacMahon
continues.

It is now some years since Colonel Julian R. Jocelyn communicated to the present
writer the fact that he could select eight cubes and assemble them on the contact
system Cy ;11,1 SO as to produce a cube of twice the linear dimensions which is a

faithful copy of the colors of any given member of the set of thirty cubes.

Suppose that it is desired to thus produce the cube denoted by A.

The two cubes A and A' have the same opposite pairs. Reject from the complete set
all the cubes which have any pair of the opposites and it will be found that we are left
with 16. These may further be divided into two sets of eight.

One of these sets of eight cubes can be assembled to give the two different
solutions to Col. Jocelyn's puzzle.

The eight cubes in either case involve 48 faces and of these exactly half, viz. 24, are
boundary faces. The remaining 24 are inside faces. It is a remarkable circumstance
that the 24 boundary faces in the first solution are inside faces in the second and vice
versa.

The geometry of the solutions can be further studied by taking advantage of the
fact that the six centers of the six faces of a cube are the summits of a regular
octahedron. The geometrical reader may be interested in following up this point.

MacMahon concluded his account of the puzzle by describing an interesting dual
relation among the blocks. Say that "A supports B" if block A is one of the eight blocks
used to make B. Then whenever A supports B, B supports A too.
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Unfolding

Kowalewski's idea for extending the cube puzzle was to consider cubes in higher
dimensions. Right away this suggestion offers many different higher dimensional
analogies to familiar, everyday tile patterns.

Here is an example. Figure 56 shows the six square tiles each with edges that are
colored with four colors without repetitions. They have been arranged in two ways to
tile a cube while satisfying the domino rule. In this example, square, two-dimensional
tiles are used to cover a three dimensional body, a cube. Furthermore, the covering is
exact. By exact I mean that there are exactly six such 4-color tiles, and all of them are
used.

This assembly, which was not actually mentioned by Kowalewski, is a natural one
to consider when you think of projections that involve objects of different dimensions.

2 4
f3 4‘\ {72 3\
1 1

3 1 4 2
X 4|4>2|2>(3 Nl a2 |2
2 3 1 1 3 4
N/ 3
2 1 \7 4‘}
4 2
4 2
13 3 X1
2 4
Figure 56

To analyze the tile pattern choose an arbitrary tile, the one with 1, 2, 3, 4 in
clockwise order will do, and turn the cube so that it faces you. You can now rotate the
cube again so that color number | is at the top. There is one color number 7 on each
tile, so there are three number |/ edges on the entire cube where the number 7 edges
of tiles meet. These number 1 edges cannot be on the same tile because no tile uses
the same color twice. Therefore two number | edges can be neither concurrent nor
parallel edges of the same face. They must either be opposite parallel edges of the
cube or skew. If they were opposite, however, the third number / edge would have to
be concurrent or parallel to one of them across a face. So the number | edges can
only be skew perpendicular edges of the cube.

Having turned the cube so that a number |/ edge is on top of the nearest face,
there are only two distinct ways to find positions for the other two number | edges.
One of the number | edges must point in the vertical direction. There are two
choices; once the choice is made the position of the third skew edge is fixed.

o

N\

> I

L\

-

Figure 57
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Figure 57 shows the two possible positions of the skew edges.

Knowing the position of these skew axes, color | can be painted astride all three of
them. It remains to be seen how the rest of the cube is colored. Let x be an unknown
color on the right-hand face.

X P

Figure 58

In the left-hand diagram of Figure 58, x * 4, because x = 4 would give two parallel
edges of the same color, which can no more happen to color 4 than it can with color 1.

In the right-hand diagram x * 3, because x = 3 would give concurrent edges along the
bottom of the cube. This observation fixes the colors on the right hand face in either
case.

Figure 59 shows the result after solving for x in Figure 58.

e
X XS

Figure 59

Two of the edges for color 3 are visible, so to continue you look for a position for
the third number 3 edge. In the cube on the left we can immediately locate edge 3 on
the rear face; on the right hand cube we can immediately locate edge number 3 on
top. To find the remaining regions that are painted with color number 3 you look for
a third edge that is skew perpendicular to the ones that have been found already.
This technique can be continued to give a complete coloring to each of Figure 56.

Zonohedra

To investigate higher dimensional cubes in a lower dimension you can make use of
polyhedra in three dimensions called zonohedra. When you project from a higher
dimension, the projection generally distorts the angles.
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The right angles of hypercubes, four dimensional analogs of ordinary cubes, are
no longer right angles in the projected image, but their fundamental cubic structure
remains as long as you use a parallel projection.

; S Figure 60 shows a general parallel projection of a four-
dimensional cube into space, as does Figure 30 on page 38.
There was a great interest in the fourth dimension in the
early part of the twentieth century that was partly fueled by
relativity theory, for more on this topic see [7]. Kowalewski
had the idea of making games, they are more like puzzles
really, that would be played on flat game boards. If you
understood that the game board was a projection of a higher
dimensional object you could solve the puzzle easily, but it
would be difficult otherwise.

Figure 60

Projections of higher dimensional cube are known as zonohedra. Kowalewski used
these zonohedra because the projections look like complicated designs, but in higher
dimensions they are simple, cube-like structures.

Models of zonohedra and other kinds of projection from higher dimensional spaces
were exhibited at scientific conferences in the United States by the Hartford,
Connecticut oriental rug retailer, Paul Donchian, in the 1930s. Donchian's displays
attracted news photographers to otherwise publicity shy mathematical conferences.
When Albert Einstein, who was associated in the public view with the fourth
dimension, visited the Donchian exhibit at the Chicago Fair in 1936 he had to come
after hours, according to a Chicago newspaper, because the public fascination with
the fourth dimension was so great that the curious crowd might have crushed both
Donchian's models and the famous physicist.

The simplest example of these parallel projections that give diagrams of
zonohedra are the plane representation of a cube. Figure 61 shows a hexagon that
comes from projecting a wire frame cube that has one corner pointing straight up.

AVANWAVAN
\VAVARVAVY

Figure 61

The diagram at the left looks like a flat hexagon divided into triangles. In order to
make it look more like a cube it is best to tilt the axis of projection slightly so that the
two opposite corners do not merge into one single point.

It is clear that the square faces on the original three-dimensional cube have
become distorted into parallelograms. For his puzzles, however, all that Kowalewski
needed was the proper relationship between corners, edges, and faces. It does no
harm to have angles distorted in a projection from higher dimensional space.
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The most symmetrical zonohedra are the rhombic dodecahedron, which can be

treated as the projection of a four-dimensional cube, and the rhombic triacontahedron
— or Kepler's Solid — a projection of a six dimensional cube.
The rhombic dodecahedron is shown in Figure 63. Kowalewski
did not begin right away by introducing this solid figure as a
projection from four dimensions. Instead he described, it in a
down-to-earth way as the shape that you get if you put skirts on a
cube.

Figure 63

To put skirts on a cube you place peaks on each of the cube's faces in such a way
that the slopes of neighboring peaks are in alignment. Figure 64 shows two such
mountains that are aligned in a flat slope.

Figure 64

When you have put on all the skirts, so that every face of the original cube has an
attached peak, the outside of your model will be made up of rhombi. These Moraldi
rhombi have diagonals that are in the ration 1: v2.

Removing the interior cube leaves a rhombic dodecahedron (dodecahedron
because there are fwelve rhombi on the exterior surface.)

It is not quite right to say that a rhombic dodecahedron is the projection of a four-
dimensional cube, because the hypercube has 16 corners and the rhombic
dodecahedron has only 14. There are two corners in the center of the rhombic
dodecahedron just as there are two opposite cube corners in the center of the
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hexagonal projection of a cube in Figure 61. A zonohedron is actually the external
shell of the projection of a higher dimensional cube.

The four axes from four-dimensional space are arranged symmetrically in the
projection that creates a rhombic dodecahedron. In fact the rhombic dodecahedron is
so symmetric that it is easy to lose sight of its origin in four-dimensional space. The

number four, however, is preserved in the zones of the rhombic
dodecahedron. Each zone consists of a band of parallel edges
that form a belt around the body.

It is interesting to make a cardboard model that shows the
bands in four different colors weaving alternately over and
under each other.

Figure 65

Figure 66 shows a net that can drawn on a larger scale, scored along the edges,
folded and glued to make a cardboard model with the four zonal bands showing.
Choose four different colors for the bands. If you make one, you will need to leave
tabs on the edges for gluing. It is easier to make than the corresponding model of
Kepler's Solid .

How can we make a settlement puzzle out of our rhombic dodecahedron? Three
possibilities are mentioned by Kowalewski. You could fill the solid figure with three-
dimensional blocks, you could successively cover the rhombic faces or you could
occupy the 14 corners of the zonohedron.

Kowalewski had the urge to make games out of these puzzles, but none of his
ideas were effective games, because the players take turns working on a settlement
puzzle. One player's moves have little effect on the choices of another.

A settlement puzzle could involve points, surfaces, or cells. The most natural
settlement of surfaces is to lay rhombic tiles colored to show the zonal bands like the
model in Figure 66. Kowalewski did not describe such a game; he had already
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discussed the game of thirty little men, a similar game played on the faces of the
rhombic triacontahedron, Kepler's Solid.

What about settling the cells of the rhombic dodecahedron? You cannot use all
eight cells that cover the surface of a hypercube in four dimensions because they
overlap each other in the projection that creates the rhombic dodecahedron. It is
possible to settle the rhombic dodecahedron, however, with four of the blocks without
overlapping. Kowalewski thought about coloring the edges of the constituent blocks
in four different colors. You place them in the rhombic dodecahedron with the like
colors pointing in the same direction so that they are aligned with the zones of the
enclosing form.

You could also try packing blocks that have opposite faces colored alike, though
Kowalewski does not mention this settlement. Figure 67 shows how it can be done.

Figure 67

There is only one way to color a single block so that opposite faces agree. If the
colors are in the order 7, 2, 3 when you look at one obtuse corner, they will be in the
reverse order on the back side. The four identical blocks can easily be fit into the
rhombic dodecahedron. ~

Having tried settlement puzzles on the faces and cells of a rhombic dodecahedron,
there are only the corners left among its geometrical elements.

A corner can be in contact with as many as four other corners. The game board
marker that we use must have four different properties to represent contact with its
neighbors. Kowalewski describes them as towers in Chapter Five. Each tower has
four stripes that could be either of two colors.
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Figure 68

Figure 68 shows a game board on which some of the towers have been properly
placed. Towers that are joined on an edge of the game board have three bands in
agreement and the fourth one different. For example, P and Q differ only on their top
bands.

The trick in settling all the towers is to focus your attention on the four-sided
regions that make up the game board. Opposite edges of one of these regions are
parallel to each other back in four-dimensions where we started mathematically.
These opposite edges are part of the same zone in three dimensions. The projection
onto the game board is made from a one-point perspective that destroys the
parallelism. The geometrically knowledgeable player, however, knows that opposite
edges of a quadrilateral region originate as parallel lines and therefore the same band
of a tower has to change along this edge as along its opposite. The towers R and S are
placed across a quadrilateral from PQ, so they must also differ only at their top
stripes. If a person does not know this, he will play a few towers and then get stuck;
but a player who knows the winning strategy can play all the towers. As soon as
someone realizes there is a strategy they lose interest, Kowalewski claims, because
"The purest pleasure can only be obtained by a childish soul who is unburdened by
the theory."

Use of the Zometool

Kowalewski's essay [5] and H. S. M. Coxeter's book
Regular Polytopes [3] helped stimulate the design of the
Zometool (additional information can be found in Baer
[2], so it is not at all surprising that this construction
system greatly facilitates the construction of models
described by Kowalewski. Few us of today have the calm
leisure needed to undertake model making as a hobby.
The Zometool allows you to see the geometrical
relationships quickly. You can decide later whether you
want to make a cardboard model for display.

Figure 69
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When you use the Zometool to make a rhombic dodecahedron (Figure 64) by putting
skirts on a cube the inner cube is made with blue struts and the mountains are yellow
ones. The rhombic faces are shown in Figure 69.

It is even more important to have some Zometools at hand when you go on to work
with Kepler's Solid, the rhombic triacontahedron. Construction of the cardboard
models recommended by Kowalewski are more difficult and time consuming than
making a rhombic dodecahedron. A Zometool model can be made very quickly and it
reveals the geometrical relationships well.

Kepler's Solid

This brings us to the heart of Kowalewski's essay the properties of Kepler's Solid,
a zonohedron of six zones. :

In the first place Kepler's solid can be made by putting skirts on regular
dodecahedron. A vast amount of labor is saved by having some Zometools. First
make a regular dodecahedron. If you have never made one before, it is best to use the
porcupine method.

Figure 70

Fill a central Zometool ball with as many long yellow struts as it will hold. When you
have that "porcupine" then connect the ends with middle length blue struts. The blue
struts make a regular dodecahedron. The yellow lines of the porcupine are just there
to help in the construction. After you have done this once, you will see how to make a
regular dodecahedron without the help of the yellow porcupine.

You can put skirts on the regular dodecahedron just as with the cube. The
resulting surface of 30 rhombi is the rhombic triacontahedron, what Kowalewski calls
"Kepler's Solid." The rhombi meet five at a corner at their acute angles and three at a
corner at their obtuse angles.
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These rhombi that form the outside shell have diagonals that are in the
proportion 1: T, where T is the number of the golden section %(1 + +/5). They are
made with red struts in the Zometool system.

The blue lines of the regular dodecahedron that was obtained on the porcupine
are all short diagonals of the golden section rhombi. When you have Kepler's solid,
you can remove the blue lines.

It is actually quite easy to make Kepler's Solid without the help of a dodecahedron
to dress up in skirts. You need sixty red Zometool struts of the same length. Make
rhombi with the red struts and assemble them so that each stick has a 5-way corner
at one end and a 3-way corner at the other end. A model with solid faces is shown in
Figure 71.

Figure 71

To fill the interior volume with parallelepiped blocks you need thirty blocks. They
are of two kinds "steep" and "stubby". You can get the idea of how to fill it with
Zometools struts. To really follow Kowalewski at this point, however, you need to
have a cardboard model or panels to attach to Zometool struts.

When the blocks are assembled in Kowalewski's settlement puzzle five different
colors are used to make an interesting model. If the model comes apart, it could take
you quite a while to get it back together again, so Kowalewski gave directions that
told how to reassemble it (pages 26-29).

Figure 72
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In addition to this puzzle involving blocks, there are possible puzzles using either
the edges or corners of Kepler's Solid.

The puzzle that comes from settling the corners of the rhombic triacontahedron
resembles the similar puzzle, based on the rhombic dodecahedron, that uses towers of
four stripes. This time the towers would have to have six stripes because the rhombic
triacontahedron has six zones. Kowalewski did not mention this settlement, probably
because it would be hard to interest anyone in it.

He did have enthusiasm for the settlement puzzle on the faces of the rhombic
triacontahedron. He imagined this puzzle as one in which little men were used as
game markers. Of course the actual play is done on a projection of the solid body onto
a game board net. This has the virtue of practical convenience as well as that of
disguising the origin of the game from the naive player. The knowledgeable player
knows that opposite edges of a quadrilateral on the game board belong to the same
zone of the solid body. You play so that either the pants or jacket of a man matches
that of any neighbor. The zonal bands can be thought of as going alternately over
and under around the triacontahedron. The strategy tells you to play your men in
that way too. As you follow a zone around the board, say the zone corresponding to
the color red, the men will have red pants, red jackets, red pants, red jacket, and so
on.

There. has been a steadily. increasing mathematical interest in settlement
problems as a branch of geometry. Grindbaum and Shepard's Tilings and Patterns,
[4], gives an extensive account of the two-dimensional case. It can be confidently
predicted that the beauty of the subject will ensure continued interest. It is probably
only a matter of time until there is a revival of interest in the architectural
applications, [1].

Figure 73
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Index of Puzzles

1. Square Tiles Cover a Square.
Chapter One, pp. 5-7.
Four colors are used on the edges of the square tiles. There are six tiles, if you
identify tiles that are identical when rotated. There is a unique solution to the
puzzle of creating a given outside border on a square of four tiles.

2. Square Tiles Cover a Cube.
Appendix, pp. 68-69.
There are six tiles, as in Puzzle 1. There are two different ways to cover the
cube.

3. Cubic Blocks Build a Cube.
Chapter One, pp. 7-10. Appendix, pp. 65-67.
Six colors are used on the faces giving thirty distinct colored blocks. There are
two solutions to the puzzle of matching a given color pattern on the outside faces
of a two-by-two assembly of blocks.

4, Parallelepiped Blocks Fill a Rhombic Dodecahedron.
Matching Takes Place on Faces.
Appendix, pp. 72-74.
The blocks are stubby blocks whose diagonals are in the ratio 1: ¥2. Opposite
faces of a block agree in color. Four blocks can fill a rhombic dodecahedron.

5. Parallelepiped Blocks Fill a Rhombic Dodecahedron.
Matching Takes Place on Edges.
Chapter Five, 45-46. Appendix, p. 73.
The blocks are stubby blocks whose diagonals are in the ratio 1: V2. Each block
uses three of the four colors with parallel edges colored alike.

6. Parallelogram Tiles Cover a Rhombic Dodecahedron.
Chapter Five 45 - 46. Appendix, p. 73. :
There are twelve tiles colored in four colors with opposite sides agreeing in
color. The tiles can be placed in the pattern given by the zonal bands, each color
corresponds to a zone.

7. Markers on the Corners of a Rhombic Dodecahedron.
Chapter Five, pp. 41 - 43. Appendix, pp. 74 - 75.
This is Kowalewski's puzzle of the four-banded towers.

8. Parallelepiped Blocks Fill a Rhombic Triacontahedron.
Chapter Three, pp. 21 - 29. Appendix p. 77.
There are twenty blocks of two kinds steep and stubby. Opposite faces are
colored alike.
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9. Parallelogram Tiles Cover a Rhombic Triacontahedron.
Chapter Four, pp. 31 - 35.
This is the puzzle of the thirty little men with variously colored pants and
jackets. They are equivalent to the use of 30 parallelogram tiles in six colors.
Each tile can use only two colors because parallel edges are colored alike.

10. Markers on the Corners of a Rhombic Triacontahedron.
Chapter Six, pp. 59-77.
Kowalewski did not discuss this as a puzzle. To treat it in the same way as
Puzzle 7 would require towers with six bands. He did treat it geometrically.
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A

antipode-free system 27

B
Baer, Stephen 1
bands
zones 43ff.
on towers as game markers 42f.
blocks 21ff., 26, 37
stubby 21ff., 25f.
steep 21ff., 25f.

C
Cartesian coordinates
four-dimensional 37f., 40ff.
six-dimensional 47ff., 53ff.
Ceres 13
color theory see systematic
complementary solids 55
contact system
see also domino rule
continued fraction 15f.
convergents see continued fraction
cube 13, 37f.
see also Cartesian coordinates, skirts, MacMahon

D
dice 35
divine section see golden section
dodecahedron
regular 13, 32
rhombic 14, 401f., 43ff., 47ff., 74f.
domino
junction see domino, rule
pinciple see domino, rule
rule 5, 7, 31, 651f.
strong 31, 41
weak 31, 41
Donchian, Paul 70f.

E
Earth 13
Euclid 13
Eudoxus 14
Exact puzzle 68

F
Fechner 63
fourth dimension 37{f., 58ff.
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G
golden section 14ff., 61ff., 77ff
continued fraction representation 15f.
pentagon, appearance in 64
rectangle 63f.
rhombus 61f.

I
icosahedron, regular 13
irminsul 38

J
Jupiter 13
Jocelyn, Col. 67

K
Kepler, Johannes 3, 13f
Kepler ball 31ff.
varieties of 26ff.
Kepler net 57
Kepler’s rhombus 16f.
Kepler’s Solid see triacontahedron
Kowalewski, Arnold 3, 18, 27
Kowalewski, Gerhard 1, 68

L
Leberecht, Chicky 58

M
MacMahon'’s blocks see MacMahon’s cubes
MacMahon’s cubes 3, 7f., 65ff.
MacMahon, P. A. 8, 66f.
Mars 13
men, game markers 33ff.
Mercury 13

N
Neptune 13
nets
for parallelepiped blocks 22
for Kepler's triacontahedron 17
for rhombic dodecahedron 73

o
octahedron, regular 13, 37

P
parallelepiped see block
Piazzi 13
porcupine 76



Index

R

rhombus
golden section, see golden section
Kepler's see golden section
Moraldi 72

rhombic
dodecahedron see dodecahedron, rhombic
skirts see skirts

S

settlement game 32, 57f.
skirts 3, 72

of a cube 13, 39

of a tetrahedron 17
steep see blocks
Steiner triple system 27

of the second order 27
stubby see blocks
systematic color theory 31

T

Temple, Shirley 1, 10

tetrahedron 13, 21ff., 31ff.

towers
as game markers 43, 75

triacontahedron 3, 14f, 17ff., 31f. 47ff.,77f.
complementary kinds 55
model of 16ff.

U

Uranus 13

VvV
Venus 13
vectors H59f.

W

Weak domino rule, see domino

Z
zones 73f.
see also bands
Zometool 76ff.
zonohedra 69ff.
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